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PREFACE.

THE general complaints against existing sys-
tems of Conic Sections, whether as being in
some instances too tedious and prolix, or in
others not sufficiently systematic, elementary,
or geometrical, have principally occasioned the
present attempt to obviate them. The same
consideration has also led to a much more hur-
ried publication than the author would, under
other circumstances, have ventured upon. But
with those who know the state of mathematical
studies in the University of Oxford at the pre-
sent time, and how much their advancement
calls for every assistance which can be given,

. and the removal of every unnecessary difficulty,
an attempt like the present will, it is hoped,
find some apology for its defects in the circum-
stances which have called it forth.

As to the method adopted, it is that of de-
ducing the curves in the first instance from the

alg
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cone: a method which has been supposed long
and complex, not, as appears to the author, from
any thing in the nature of the principle itself,
but rather from the partieular form in which
it has in some instances been applied. By carry-
ing this deduction only as far as one or two of
the primary cases, from which all the other pro-
perties very readily follow in plano, it is hoped
that this method will be found so simplified as
to recommend itself, not less in brevity than in
directness. The several descriptions of the
curves in plano are afterwards given, and the
properties which belong to them, as considered
in each point of view, deduced upon purely
geometrical prmclples

As to the externit of the Treatise, the author
trusts it will be found to contain all the prin-
cipal or most useful properties of these curves,
with reference to what must, in the present
state of mathematical science, be the main ob-
jects of a geometrical system ; in the first place,
to afford a preparative for the study of New-
ton’s Principia; and in the second, to form a
suitable introduction to the general theory of
curves investigated by the higher analysis;—
objects which, notwithstanding the preference
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given by the continental writers, and of late by
some in our own country, to the exclusive use
of algebraic processes, seem still generally re-
cognised in our academical courses as possess-
ing many advantages, especially when these
studies are regarded in reference to their use
as an exercise of the intellectual faculties. -

It may be necessary, for the sake of junior
students, to make a remark or two respecting
the mode -of reasoning and notation here em-
ployed.

The reasoning in Part I. is offered as strictly
geometrical : that is, dependent solely upon
geometrical definitions and the geometrical pro-
perties of figures; no deduction being made by
virtue of any algebraic operation upon symbols,
even when representing geometrical quantities.

The mode of notation adopted might at first
sight be thought to be an introduction of alge-
braic processes; but it is not so in fact: and
the reeder is desired carefully to bear in mind
that these symbols are adopted only for the
sake of brevity and perspicuity: the signs +
and — never mean any thing more than the add-

a4
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ing or taking away a given line or space. . The
sign of multiplication always means the rect-
angle contained under two given lines; and
two quantities placed as a fraction simply ex-

press their ratio: thus % is merely equivalent

4 C
toA.B,andﬁ=ﬁtoA.B..C.D.

This mode of expressing proportionals in
many cases offers considerable advantages in
point of brevity and clearness, from bringing at
once under the eye all the steps of a proof,
which if written at length would appear long
and complex. Its utility will be perceived, and
any apparent obscurity in it removed, upon the
perusal of a very few of the propositions where
it is exemplified.

An apology may possibly be also necessary
for the introduction of a somewhat unusual
mode of designating the different lines and
quantities : but this has been done with the
idea of rendering the investigations more clear
to the learner by the use of a set of characters
regulated upon one system throughout. The
several symbols and contractions which are
made use of, will hardly require any formal ex-
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planation: thus VMU signifies the rectangle
contained by the straight lines VM, MU ; the
symbol “by ©” means, by the property of the
% circle;” a second line, or set of lines, analo-
gous to a former, are represented by the same
characters, distinguished by 2 subjoined, thus,
PM, P.M, &c.

In the second Part, the reasoning involves
some departure from what are usually termed
geometrical or elementary methods; that is to
say, the doctrine of limits is introduced: and
in some instances the deductions are made
upon algebraic or trigonometrical principles.
It is presumed that the student has become
acquainted with the method of ultimate ratios
before entering upon this second Part.

An Appendix is subjoined, containing a series
of demonstrations which establish the principal
propositions without any deduction from the
cone, except the simple cases where the axis
and its vertical tangents are concerned: these
may be substituted for the others by those
readers who prefer such a method.
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ERRATA.

Page. Line. Error. Correction.

4 17 PM; PM:
23 8 we have, we have by parallels,
31 8 PM, PM:

32 14 B, B
35 3 EF EF;
36 9 -2 3

Passim. The sign < (less than) has been in many
places confounded with £ (angle) ; as also a (triangle)
with A. But these errors will hardly mislead the
reader.






ADDENDA TO THE CONIC SECTIONS.
————

Pag. 5. After Art. 5. by Euc. II. 5.

| VMU=(CV +CM) (CV -CM)
= CPV*-CM*. -
In the hyperbola we must take CM —CV, or we
have
VMU=CM-CV".
This value is frequently used in the subsequent pro-
positions.

eI —

P. 7. After Art. 13. add:

It is evident that if, instead of the secant 7T',P,Q,
we had any tangent to the circle meeting PT, in T,
the square of this tangent might be substituted in the
proportion for the rectangle of the segments of the se-
cant. This is the case referred to in Art. 28.

et

P. 30. After Art. (22.) add ;
Hence, and from (15.)

El. PE+EF,+PF
Hyp. PE + EF,- PF
.*. Adding or subtracting equals.

El. PE-EF,\ _
Hyp. EF, —PE} =FF

}=2A=21_’E
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xvi ' " ADDENDA.
Thls is the property referred to in the proof of Art.
38, where obviously

El. PE'-EF; 3 (PE + EF) (PE~EF,)
Hyp. EF - PE* {(PF+EF,) (EF,~PE)
which by the above = FPF, o
——
P. 32. to Art. (30) add;
o FU

Fr=VF.FP. FP
The student will compare this expression, as well as
those for the subtangent, normal, subnormal, &c. with

those in the parabola, where the centre is infinitely
remote.




. L S .
e s oay . . .

PART L°

e .
" COMPRISING .THE' GEOMETRICAL AND ELE-
_'MENTARY PROPERTIES OF THE

CONIC SECTIONS.
——

SECT. 1.
THE CURVES DEDUCED FROM THE CONE.

, ——
On the Cone and its sections in general.
S ——

DEFINITION. A right cone is the solid generated by
the revolution of a right angled triangle about one of its
perpendicular sides. The base of the triangle conse-
quently describes a cércle, which is called the base of
the cone. The hypothenuse of the triangle at any po-
sition of its revolution is called a side of the cone:
the perpendicular about which it revolves, the axis of
the cone ; and its extremity the apex.

A plane cutting the cone and passing through the
apex is called a vertical plane, or vertical section: it
evidently forms a triangle. Any section of the cone
by a plane parallel to the base, is evidently a circle.

If the axis be produced above the apex, and a simi-
lar triangle, in an inverted position with respect to the
former, revolve about it in the same manner, it will
generate a similar cone, inverted with respect to the
other ; which is called the opposite cone. (See Fig. 1.)

If the cone or opposite cones be cut by a plane not
passing through the apex, nor parallel to the base, its
intersection with the conical surface will neither be a

B

.
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circle nor a rectilineal figure; but will form a certain
curve, the nature of which will be different according
to the inclination of the plane : these curves are what
are usually comprised under the name of the Conic
Sections. Such sections are represented in Fig. (1.)
where the cutting plane is taken in three different po-
sitions : in one, parallel to the opposite side of the
cone; in a second, inclined at a less angle to the
base ; in a third, at a greater angle, and meeting the
opposite cone where it forms an inverted curve.
.In the first case, where the cutting plane is parallel
to a side of the cone, the curve is called @ parabola ;
" its plane being parallel to the opposite side of the cone,
the curve evidently never meets that side of the cone,
but extends on each side as far as the cone itself is ex-
tended.

In the second case, the cutting plane is inclined to
the base at a less angle than the side of the cone ;
and consequently cuts the cone through both its oppo-
site sides. In this case the curve is called an Ellipse:
it surrounds the cone, or is a curve returning into itself.

In the third case, the cutting plane is inclined to
the base at a greater angle than the side of the cone .
forms with it; whence it will evidently not meet the
opposite side of the cone: but if an opposite cone be
formed, it will meet the opposite cone, and there form
an inverted curve of the same kind: each of these
curves extends towards the base of the respective cones
as far as the cones themselves are extended. These
curves are termed the kyperbola and the opposite hy-
perbola, or, named together, opposite hyperbolas.

We next proceed to define certain terms which be-
long to all these curves in common.

DEF. 1. If the axis of the cone be supposed drawn,
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and a plane passed through it at right angles with the
. plane of the section, the intersection of these two
planes will give a straight line in the plane of the
curve called tke axis of the curve.

2. The point where the axis meets the curve is
called a vertex. The parabola has evidently only one ver-
tex ; each opposite hyperbola one ; and the ellipse two.

3. In the ellipse and hyperbola, the point of bisection
of the axis between the vertices is called the centre.

4. A line perpendicular to the axis, terminated both
ways by the curve, is called an ordinate to the axis,
But this term is more commonly applied to kalf the or-
dinate, the whole being distinguished as “ a double
¢ ordinate.”

5. The segment of the axis between the vertex and
an ordinate is called an abscissa.

————

§. 1.
ELEMENTARY AND GENERAL PROPERTIES REFERR-

ING TO THE AXIS, AND BELONGING TO ALL THE

CONIC SECTIONS.

(1.) Pror. The axis bisects its ordinates.

(F1a. I.) The curve, its axis, and ordinates being con-
structed as by the definition, the intersection of the ver-
tical plane through the axis of the cone, with a circle
parallel to the base of the cone, is the diameter of the
circle :

And the intersection of that circle with the plane of
the curve is a perpendicular to its axis; (Euc. II. 19.)
therefore (by the property of the circle) it is bisected
by the axis; and by Def. it is an ordinate.

(2.) Pror. Case 1. The rectangles of the abscissee
are as the squares of the ordinates in the ellipse and

hyperbola.
B2
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The same figure and construction remaining, we have
by similar triangles the following proportions:

VM_MB UM AM
VM~ Mg ™ U=
whence, by compounding the proportions, and substi-

tuting terms which are equal in value,

VMU AMB= (by o) PM
VMU~ Mg = (by ©) PIT

(8.) Case 2. In the parabola, since there is no second
vertex U, and from the parallelism 4M=aM, this

proportion becomes
yV™m pPMm:

VM~ PIM:

Or in the parabola the abscisse are as the squares
of the ordinates.

(4.) DEF. In the parabola let L be a third propor-
tional to a given abscissa #M and its ordinate; or,
VM.L=PM": then from the ahove proportion we
have

VM.L(=) PM:
VM.L(-.=)PM*

or the same quantity L is a third proportional to any
abscissa and its corresponding ordinate. Since the or-
dinate, beginning from the vertex where it is nothing,
has all possible values, there is some double ordinate
equal to L : this is called the latus rectum, or para-
meter to the axis.

(6.) DEF. In the ellipse, the ordinate to the axis
which passes through the centre is called the conju-
gate axis. Writing A for the half axis, and B for
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the half conjugate axis, we have from (2)
4 VMU
B T PM

(6.) Comr. It appears, from the formation of the
curve in the conme, that the conjugate axis can never
be greater than the first axis; it may be equal toit; in
which case the section becomes parallel to the base, or
the ellipse becomes a circle :

and we have VMU=PM".

(7.) DEF. The latus rectum is that double ordinate
to the first axis, which is a third proportional to the
two axes.

A _ 4
B 1L

(8.) DEF. Inthe hyperbola, the Conjugate axsis is a
perpendicular to the axis through the centre; deter-
mined in length by a proportion, the same as that
Jjust stated for the ellipse.

The latus rectum is similarly defined.

(9) Cor. It appears, from the formation of the curves
in the cone, that the conjugate axis may be either equal
to, greater or less than, the first axis.

If the axes be equal, the hyperbolas are called equs-
lateral; and we have

A=B=}L
and VMU= PM".

(10.) DEF. Since the axes of the hyperbola may
bhave any ratio to each other, it is obvious that there
may be a pair of opposite hyperbolas whose axes shall
be equal to those of a given pair, but having the ratio
tnverted. Such hyperbolas being described upon the
conjugate axis of the former pair as their first axis,
and having the first axis of the former as their conju-
gate, are called conjugate hyperbolas.

Hence
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(12.) DEF. Conceive a plane touching a cone along
ane of its sides: the intersection of such a plane with
the plane of a conic section passing through that side
of the cone is called a tangent to the conic section.

(12.) Prop. The tangent at the vertex of a conic
section is perpendicular to the axis.

For conceive a plane touching the cone along the
side which passes through the vertex ; the vertical sec-
tion through the axis of the curve will be perpendicu-
lar to this touching plane, and the plane of the curve
will again be perpendicular to the vertical section ; con-
sequently their intersection will be perpendicular to
the vertical section, and therefore perpendicular to the
axis of the curve. (See Fig. 1,2.)

CoRr. A secant or line cutting a conic sectionm, if
it be perpendicular to the axis, is also a secant to a
_circle parallel to the base, which it meets in the same
points.

(18.) Prop. Let the tangent to the vertex of a co-
nic section meet another tangent to any point ; which
also produced meets a secant parallel to the vertical
tangent : then the squares of the 3 tangents, and the
rectangle under the segments of the secant, are pro-
portionals.

For (Fig. 2.) conceive V PPQ to be points in any

conic section ; pass a side of the cone through P; the
plane through, OP, TT will touch the cone, and give

parallel tangents =7 u-T to the circles parallel to the
.base. At Tlet the tangent meet the secant parallel
to the vertlcal tangent, cutting the curve in PQ: then

we bave
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’r = (by o) T»* T=* = (by o) PTQ
-— 3 Yy _2 2 3 2
TP (sim. as) TP

——————
(14.) Pror. On the same axis with the same vertex
let two conic sections of the same kind be described, as
in Fig. (8.) where the two curves may represent either
two parabolas, two hyperbolas, or portions of two el-
lipses : .
Let ordinates to the two curves be drawn through
any the same points in the axis, as PM =M, PM

M. P

Then the ordinates through the same point are in a
&iven ratio. For (omitting in the parabola MU and
MU) we have in any of the curves (by 2 and 3)

FM.MU _ PM: =)
VM.MU ~ PM ~ z0F .
%” = a constant ratio = g (ellipse and hyperbola).
If the second ellipse be a circle, or the second hyper-
bola equilateral, 8=4 and the ratio becomes = g

(15.) Cor. 1. Supposing the second ellipse to be a
circle, join Cr and draw PR parallel to it, meeting the
axis in Q. Therefore we have

sM=VMU . Cr=A'
—ppr— = G A9pa—

Hence QR=A4F B; or if QR = difference or sum of
the semi-axes be placed in any position with its extre-
mities in the lines #C CB at right angles, and QP be
made equal to B, the point P will be in the ellipse :
which may thus be described in plano.

B4
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(16.) Cor. 2. With any of the conic sections
Let ¢PT be a tangent to the first curve at P.
Through T and » draw 7% : then we have,

PM tM, ( > ) PM
(51m AS) — =

=M -rM( .>) rM

or any such point hes above %y OT rrT is a tangent.
Hence tangents from the extremities of the two ordi-
nates meet the axis in the same point.

(17.) Cor. 3. If instead of taking ==, in a second
curve, as above, we suppose them points in the same
curve on the other side of the axis, the same demon-
stration will apply to shew that tangents at the oppo-
site extremities of an ordinate will meet the ‘axis in the
same point.

(18.) Cor. 4. If again xM, instead of being the con-
tinuation of the ordinate PM, were (in the ellipse, and

Jhyperbola) an ordinate at an equal distance from the
opposite vertex, and still on the opposite side of the
axis to PM, the tangent =T would meet the axis at

_an equal distance MT, and would be parallel to PT;
and thence equal to it.

et —————

§. 2.
PROPERTIES DEDUCED FROM THE CONE, AND RE-
FERRING TO ANY DIAMETERS.

PARABOLA.

(19.) LEMMA. Pass planes through two given pa-
rallel lines, and a point not in the same plane : these
planes intersect in a line parallel to each of the given
lines.

(Fig. 4.) Let TP TP be the given parallels. Pass
planes through them and O. Taking any points TP in
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one line, and equidistant points TP in the other, join
TT TO TO: and at PP draw PH PH respectively

parallel to 70 TO in the same planes then the

bases of the tnangles TT,=PP,<T,=<P, <T=«<
. P: hence the aAs are equal; TO-PH T70=PH :

and .. by parallels, OH is parallel to TP TP

(20.) Lemma. (Fig.5.) T is parallel to the tangent
at H, to the circle 4aH. Take any chord Aa, join
AH aH and produce to meet the parallel in 7r: then
since the <formed by the tangent with «H=FH:T
' = < in alternate segments, a4 H, we have similar A s

aAH <HT,
whence AH_-H
«H = TH
and consequently 4 HT= aHr.

(21.) Pror. Let two lines parallel to the axis cut .
the curve and meet a tangent : the squares of the seg-
ments of the tangent are as the segments of the se-
cants between the curve and the tangent.

(Fig. 6.) Conceive PPV to be points in the para-

bola. The secants parallel to the axis 7'P TP meet the
tangent to »” in T'T,; pass planes through TP TP

and O; these intersect in the side of the cone OH, pa-
rallel to the plane of the parabola, and to each of the
secants, (by 19 :)

These planes intersect the plane parallel to the. base
through T in AH oH: and that through 7, in AH

also the plane of the parabola intersects the ﬁrst plane
in Tr; then by sim. As we have,
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OH AH.TH
TP~ AT.TH.
and OH AHTH
S miam
but OH «H.:H = (by 20) AH. TH

OH™ AH.TH

3 32 3 3 3

TP. AT TH=(by ©) Tw* TV
“TP="ATTH=(by ©) Tw ~ TV"

(as in 13.)

Der. A Diameter is any line parallel to the ams,
cutting the curve.

An Ordinate is aline cutting a diameter, terminated
by the curve, and parallel to the tangent at the vertex
of the diameter.

An Abscissa is the segment of a diameter between
the vertex and an ordinate.

The Parameter to any Diameter is a third propor-
tional to the ordinate and abscissa of that Diameter.

(22.) Cor. 1. Any diameter bisects its ordinates.
In (21) if TP= TP then 7%= TV also PP is

parallel to 7’7, and .. is an ordmate by Def. and is
bisected by the diameter through 7.

(28.) Cor. 2. The abscisse are as the squares of
the ordinates.

(Fig. 7.) Retaining the same construction ; by equals
and parallels.
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VM _PM:
VM~ PM*
3 3 2
Whence writing P for the parameter
by definition VM. P=PM:

also TP. P=/T"

(24.) DEF. A subtangent is the part of any diame-
ter intercepted between the points where it is met by
an ordinate, and by a tangent at the extremity of that
ordinate.

Cor. (8.) The subtangent=twice the abscissa.

A tangent to P meets the diameter produced in 7,
and a line parallel to the diameter through P in T

from (21) we have
P (=) 4. 1P

1,P= (by ||s) 2rM (__) 4. <V
o TM=2+V=2VM.
(25.) Cor. Hence tangents at P and P, the opposite

extremities of the ordinate meet the diameter pro-
duced, in the same point.

The axis is evidently a diameter, and the property
(8) a particular case of the above: these latter pro-
perties also apply to the axis.

P . g

PROPERTIES DEDUCED FROM THE CONE REFERRING
TO ANY DIAMETERS.

ELLIPSE AND HYPERBOLA.
DEF. Any straight line passing through the centre
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and terminated each way by the curve is called @
diameter.

The ordinate and abscissa are defined as in the pa-
rabola.

(26.) Prop. Any diameter is bisected in the centre.

(Fig. 10, and 11.) If ordinates to the aris PM
KM be drawn at equal distances on each side of the
centre and on opposite sides of the axis, and-their ex-
tremities PK joined with C, we shall have equal tri-
angles PMC KMC. And from the right angles and
the equality of the sides they are also equiangular:
+.<PCM=KCM, or PC CK lie in oue line forming
a diameter: and since these segments are equal, it is
bisected in the centre.

(27.) Coxr. The tangents at the vertices of any
diameter are parallel.

For by (18) the tangents at the extremities of equal
ordinates to the axis on opposite sides are parallel,
and by the above the junction of the points of contact
is a diameter.

(28.) Propr. The vertical tangents to any diameter
are as the segments of any third tangent which they
respectively intercept.

Case 1. In the ellipse Fig. (8) /U are the vertices
at which the parallel tangents 2T UT, are drawn,
meeting the tangent TPT, to any point P.

Through the parallel tangents, and O the apex, pass
planes touching the cone, which will intersect in OH
parallel to each of the tangents by (19.)

They also intersect planes parallel to the base through
I7T,in aH, TAH, TAH : which are tangents to the

3. 2 13

circles.
Then by similar As we have,
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T4 AH= (by 0) aH AH TA
™= OH “OHTTU -
Whence as in (18) we have
TV TA= Tr TP

Case 2. In the hyperbola (Fig. 9.) TP a tangent at
any point P in one curve, meets the parallel tangents
to the opposite vertices UV, in T,T.

Then the plane through TP and O will touch the
cones along PA OA and T4 TA will be tangents to

the circles parallel to the base.
Planes through /T UT and O will intersect in

HOH parallel to each (16) : therefore producing =T
=1 to meet OH, the A OHsx is similar to TV, and
OHpx= to xTU.

The plane OHfx also touches the opposite cone in
Oz, and forms a tangent x H=»H; and since O=,=

3 3 2 2

Or,, the A OxH is equal and similar to A OxH,
32 3 3

therefore AxTV is similar to z7TU. Hence we have

TP TA=Tx= TV
TP TA=T=~TU

(29.) Cor. In the hyperbola since TP (see also
Fig. 11) is necessarily less than PT, TV is also less

than 7U, and consequently if the ;angent meet the

dmmeZeI" VU in v, V1< Uxr, or 1, lies between the
centre and the curve to which the tangent belongs.
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(80.) Scholium.

By a construction very similar to that used in the
above proposition we might deduce an analogous pro-
perty, if instead of the lines T UT being tangents,

they had been secants; so that we should have had
two points of section corresponding to each point of
contact. By joining each of such points with the apex,
and passing planes as before, we should have a set of
similar triangles on each side of the cone ; from which,
by composition of ratios, we might deduce the property,
that the squares of the segments of the tangent TPT,
are as the rectangles of the segments of the parallel
secants which they meet. By a further modification of
the came construction we might shew, that a similar pro-
perty would hold good, if the tangents, instead of lying
in the same line, were parallel at opposite parts of the
curve. And further, it might be shewn in a way very
similar, that if for these tangents again secants were
substituted, we should have the rectangles of their seg-
ments proportionals. This is in fact one of the most
general properties of the Conic Sections; and from it
the subsequent properties would be immediately de-
duced. But the investigation being somewhat com-
plex, we shall in the present treatise advance no fur-
ther with these properties deduced from the cone than
to the case of four tangents above investigated. By
the help of this property alone, those of diameters in
general may be readily established in the ellipse, as
will presently appear; though doubtless with some sa-
‘crifice of generality and symmetry in the deduction:
and we shall also find it necessary to depart still more
widely from uniformity, in the corresponding case in
the hyperbola.
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Those readers who are desirous of further investi-
gating these general properties are referred to Dr. Ro-
bertson’s Conic Sections, Book I.

(31.) Pror. Let any tangent meet a diameter pro-
duced, and from the contact draw an ordinate: then
the semi-diam.’=the rectangle of the segments from
the centre to the ordinate, and to the tangent.

Take the vertical tangents meeting in 7" and T,
the tangent to any point P, which also meets the dia-
meter produced in 7 ; then we have (Figs. 10 and 11.)

yr PT rym.
(by 28.) TT=PT= (by [|s) Um’

also .....= :_Z(sim. As).

Hence by proportionals, (and since (29) ¥ <t U the
lower sign belongs to the hyperbola,)

YaU++P)=Cr _Z(UM+VM)=CV
LUFV=CFV L (UMFVM)=CM
DEF. The subtangent is defined as in the parabola.
(32.) Cor. By the proposition :
CV*=CM.(CM + Mr)
=CM* + CM~
_fCcr—cae () \ _
T\ CM—CV* (hyp.) ) —

Whence we have M=V M. ](;lTlIIJ

. CMx

Or the subtangent = }
2d abscissa

abscissa x :
segment from centre to ordinate.

(33.) Pror. In the ellipse, any diameter bisects its
ordinates.
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In (Fig. 10.) let #U Bg be two diameters, such that
each is parallel to the ordinates of the other: then
(PM being the portion of the ordinate betwees the
curve and the diameter) by the parallels we have PM
=CM : and by (31), and proportionals

PM=CM* PM TM.MC=(32) VMU

= =(sim. a)
Ch o =60 Ao c=Enor

If the segment of the same ordinate on the other
side of the diameter be taken, since the conjugate dia-
meter is bisected in the centre, we shall have the same
proportion with all the terms the same, except QM in-
stead of PM, which ...= PM, or the ordinate is bi-
sected by the diameter. Thus the equation applies to
PM as the half ordinate, and we have the

(34.) Pror. The rectangles of the abscisse are as
the squares of the ordinates.

(85.) Pror. In the hyperbola, any diameter bisects
its ordinates.

(Fig. 20.) If the vertical tangents to the conjugate

axes be produced to meet each other, they form a rect-.

angle whose diagonals pass through the centre. Let
these diagonals be drawn and produced indefinitely.

1st. Let the vertical tangent meet one diagonal in
L, and any ordinate to the axis PQ produced meet
them in R, p; then by parallels and (8) we have

Ccr: _'_CM’_ CM:-Cr>
CB'=VL — RM:~ RM:-VL: - .=PM:
s VEIP=RM: — PM:= PRQ.
But from the bisection of the ordinate to the axis

and of Rp, PR=Qp
Whence VL’=RP,.
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And this being true of any ordinate, let one through

D meet the diagonals in H,N, .-. RPp=HDN.
2dly, Let a tangent at D meet the diagonals in 7% ;

draw the parallel PQ which is .. an ordinate to CD,

then by similar triangles,
RP HD and Fr = DN
RP~DT " P,~ Dr

R.Pp ( =) HDN
RPy (=) TD.
and similarly pQR:rDT
L1, . DT=Dx.

hence (Euc. II. 1. &c.) RP=pQ,, and .

Hence the diameter blsects PQ
(86.) Cor. (Fig. 20.) From the last article we have
RPp—PRQ RM’ I?Jll’ DT
Hence by parallels
RM -DT*=RFM* DT
CM —CD= DMK~ DC:

And since the same is true with any other ordinate, we

have in hyperbola as in the ellipse ;
The rectangles of the abscisse are as the squares of

the ordinates.

(87.) Scholium. It is evident that the axes are dia-
meters ; and the above propesition respecting diame-
ters and their ordinates includes as a particular case

the property of the axes at first deduced. (2).
In like manner we have the following definitions :

C
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. DEF. The ordinate to any diameter of an ellipse
which passes through the centre is called the conjugate
diameter ; and we have from the last proposition,
(writing the first semi-diameter=20), and the semi-
conjugate= G)

VMU_ D
PM G-

In the hyperbola, the conjugate diameter is defined
as a line through the centre parallel to the ordinates of
the first diameter, and determined in length by the
above proportion.

DEF. The parameter is a third proportional to a dia-
meter and its conjugate : hence (writing P for the

parameter) the above ratio =%I-)P’

(88.) Cox. Hence in the hyperbola (Fig. 20.) G=
DT; and completing the parallelogram C7, its dia-
gonal GD is bisected by the diagonal C7"

Also since Dr=CG@, GD isalso parallel to the other
diagonal Cr:

The whole parallelogram thus formed is said to be
circumscribed about the conjugate diameters; and all
such parallelograms have the same diagonals as that
circumscribed about the axes.

_.+_

(89.) In the ellipse, since the conjugate diameter is
limited by the curve, all the properties of diameters
apply to it. In the hyperbola, since it is not thus
limited, we must have recourse to further considera-
tions to deduce its properties.

DEF. A line drawn from any point in the hyperbola
to a conjugate diameter, parallel to the first diameter,
is called a conjugate ordinate.
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 Propr. If a conjugate ordinate be drawn, the square
of the segment of the conjugate diameter between the
centre and the conjugate ordinate, +the square of the
semi-conjugate diameter is to the square of the conju-
gate ordinate, as the squares of the conjugate and first
diameters. For from (37) we have, (Fig. 11.)

D CM-D=PM-D* PM{- D+ D)
G-~ Pir= CM- = CM’+G’

(40.) Prop. Let a tangent meet the conjugate dia-
meter, and a conjugate ordinate be drawn from the
point of contact ; then the semi-conjugate diameter)®
=the rectangle of the segments from the centre to the
tangent, and to the conjugate ordinate.

For from (81) inversely, we have

cr: Cr,
=0 whence,
cr: Cr C'r,
CAF —CP = CM = Ci=at~ ™ 2% p3z
" .G
But the first ratio also—m

Therefore G*=(PM=)CM . Cx.

(41.) Schol. These properties applied to the case of
the axes lead us to observe, that here we have two dis-
tinct sets of properties referring to the conjugate axis ;
one belonging to ordinates drawn to it from the first
curve ; another belonging to those drawn to it from
the second, or conjugate hyperbola.

With respect to diameters in general, it is obvious,
that if any conjugate diameter meet the conjugate
curves, ordinates may in like manner he drawn to it
from the conjugate curves, and the proportion between

c2
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the ordinates and abscissa will hold good ; but nothing
has yet appeared to shew that the vertices of that dia-
meter, as determined by the Def. will lie in the con-
jugate curves, and that consequently the first diameter
becomes its conjugate: this, however, will be shewn
subsequently.

(42.) Comr. In the ellipse and hyperbola, if one dia-
meter be parallel to the ordinates of a second, the se-
cond is parallel to the ordinates of the first.

(Fig. 10, and 11.) Let CB be parallel to PM an
ordinate to C/; join QC and produce till it meets
the curve in D. Hence QC=CD, also QM=PM.
Hence PD is parallel to CV, whence, and from the

bisection of QD, PD is bisected in M : it is therefore
an ordinate to CB.

e —

(48.) Prop. If two parallel tangents to an ellipse or
hyperbola meet any two other parallel tangents, the
segments between contact and concourse are respect-
ively equal to the corresponding segments of the other
tangents parallel to them.

Let the parallel tangents "7, UT meet the other

parallel tangents 7P7, K7, then TP = KT'; and
3 3
VT=UT, &c.
3
For joining C7, if it be produced to meet 2’7, we
3

have the sides CF=CU, and the <s at C and at V"~
and U equal. Whence CT— CT and VT=U T

In like manner, if CT be produced to meet TP we
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have CT—- CT and K T_. T'P; it therefore meets both

PT and VT i T theu' point of concourse.

(44.) Propr. The same construction remaining, and
drawing a diameter parallel to one pair of tangents,
the semi-diameter)’=rectangle of the parallel tan-
gents, or of the segments of one of them.

Draw the diameter CB parallel to the tangents V7"
UZT. Let TP meet the diameter U} produced in 7,

and CB produced in r; draw the ordinates PM, PM

to the two diameters. Then we have

_ ((ell) Co—CP O~ Cr.CM
PxU= 1 (hyp.)CP" - } Gn){C.CM-Cr’}

= CM

PM-CM,
Whence 72 Ur = oy | )_.C__ ve.

- VT. UT,=Cr,.CM,=CB" (by 31.)
‘Which by the above also= 7UT.
3
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SECTION II.

THE CONSTRUCTION OF THE CURVES BY THE
FOCUS, AND PROPERTIES REFERRING
TO THIS CONSTRUCTION.

———

PARABOLA.
et

DEF. The focus is that point in the axis where it is
cut by the latus rectum.

The tangent at the extremity of this ordinate is
called the focal tangent.

A perpendicular to the axis at the point where the
focal tangent meets it, is called the directriz.

A line drawn from any point in the curve to the fo-
cus is called the focal line.

The abscissa cut off on the axis by the latus rectum
is called the focal abscissa.

——

Pror. The focal abscissa= 4 latus rectum.
(Fig. 12.) F being the focus, we have (by sect. i. 4.)
LF=L.VF ..=2LF. VF
 VF=JLF=}L.
(2.) Prop. From any point in the curve, a perpen-
dicular being drawn to the directrix, and a line to the

focus,
The perpendicular=the focal line.
1st. The tangent at L meeting the vertical tangent
in T from (i. 24), by parallels we have
VT=VF.
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2dly. The directrix being constructed according to
the definition, and through any point P drawing the
ordinate produced to meet the tangent, PM, and
joining PF, we have (by i.13.)
TL: VT ( =)VF

Ly PQ(.= FM
And adding equals . . . . + PM* . ..+_-_£1_|_1’
Hence (denoting a perpendicular on the directrix from
any point, as P, &c. by AP, &c.) we have

FP-AP LF=AL VF=AV.

Cor. 1. If at any point (as suppose f) we have
tF> tA, the point t lies out of the curve and above
it.

For conceive a circular arc with centre F and dis-
tance F¥ to cut the curve in ¢, then we have

’ tF=qF=4qA .. > tA.
and consequently ¢ lies below ¢, or ¢ is without the
curve.

(8.) Comr. 2. The tangent at any point in the curve
makes equal angles with the focal line and the diame-
ter through that point.

(Fig. 15.) PF being any focal line, suppose PH,
the diameter produced and meeting the directrix in H.
Draw 7Pt bisecting the angle FPH ; in it take any
point ¢, join ¢F, ¢ H; then from the common side £P, the
equal angles at P, and the equal sides PF PH, the
third sides of the triangle are equal; or tF=tH>t .
~. t is a point out of the curve, and above it; or
tPr is a tangent. And the < FPH being bisected,
it is evident that < FPr=¢tPM.
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(4.) Cor. 8. From the bisection of the angle by the
tangent we have, (by parallels,) if the tangent meet
the axis in T, < FPT=FTP ... FP=FT.

Also, Fr being the focal perpendicular, 7P is bi-
sected in 7 ; and since, from (i. 24.) and parallels, 7P is
also bisected by its concourse with the vertical tangent

. 7 is the point of concourse.

et ——

DEF. The Normal is a perpendicular to a tangent at
the point of contact, terminated by the axis.

The Subnormal is the segment of the axis inter-
cepted between the normal and an ordinate through
the point of contact.

The focal perpendicular is the perpendicular upon a
tangent from the focus.

———

(5.) Pror. The normal=twice the focal perpendi-
cular. By parallels and (i. 24.)

27x( =)TP
2 Fr(~=) PN

(6.) Cor. 1. The subnormal = half the latus rectum.
From the Prop. and the similar triangles PMN
Vs,

PN( —) oF~
NM (=) aVF=3L.

(7.) Cor. 2. The segment of the focal line cut off
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by a perpendicular from the extremity of the normal
= half the latus rectum.

Drawing the perpendicular NK, the side PN being
common, and 2 FPN = FNP by (4), from the equal
triangles we have

PK=NM-=}L.
___.+__-

Focal line _ Focal perpendicular.
Focal perpendicular™  Focal abscissa.

From the right angles at 7 and r we have similar
triangles, whence,

VF Fr

r FT=FP.

(9.) Hence Fr*=VF.FP  Fre<FP
Or the square of the focal perpendicular varies as the
Jocal line.

(10.) Prop. The distance from the vertex of any
diameter to the focus = } of the parameter to that
diameter.

By the right angled triangle we have (Euc. 6. 8.)

NTM = UT:*= VT.P (by i. 23.) and parallels.
Hence by proportionals

(8.) Pror.

™ _ P
TV=3TM- NT=2UF 2} P.

(11.) Cor. Let PM be the ordinate to the same
diameter which passes through the focus ;—then

PM:=4UF .UM = 4 UF* (by 4.)
Or the focal ordinate to any diameter = its parameter.

e ——
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THE CONSTRUCTION OF THE CURVES BY THE FOCUS ;
AND PROPERTIES REFERRING TO THIS CONSTRUC-
TION.

——

ELLIPSE AND HYPERBOLA.

e *

(12.) DEF. The focus is that point in the axis,
where it is cut by the latus rectum. (See Fig.13,
14.)

Cor. Hence there are two such points in the axis
of the ellipse, one on each side of the centre at equal
distances : and one in each opposite hyperbola.

The focal tangent, focal line, and directriz are de-
fined as in the parabola.

Cor. There is a directriz belonging to each vertex
of the ellipse and opposite hyperbolas.

DEF. The abscisse into which the axis is divided
by the focus are called the focal abscisse.

+—

(18.) Pror. The rectangle of the focal abscissee =
(semi-conjugate axis) *
For the ordinate LF being by supposition = § L
by substituting it in the proportion (i. 7.) we have
B> LF (=)L
4* VFU('.=) B
(14.) Propr. From any point in the curve a perpen-
dicular being drawn to the directrix, and a line to the
focus,
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Perpendicular to directrix
Focal line
DEF. This ratio is called the determining ratio.
1st. (Fig. 13, 14.) The tangent to L meeting the
vertical tangents in 7 T, (as in fig. 10.) we have,

T TL VF
T TL™ (by ||s)m,

Hence V'T. U7, is similar to V’FU, and each of them
being—_B” we have,
VT=VF, and UT,=UF.
2dly. The directrix being constructed according to
the definition, and through any point P drawing the
ordinate produced to meet the tangent £PM, and join-
ing PF', we have (as in the parabola)

TL: VT (=) VF

= a constant ratio.

Le Pt (-=)FM:
And adding equals....+ PM* + PM:
tM: (-.=) FpP

Hence (denoting a perpendicular on the directrix
from any point, as P, &c. by AP, &c.) we -have by
similar triangles,

AV AL At = AP _ AU
VI=VF~LF~ tM=PF~ UT,=UF

This ratio is evidently,

In the ellipse =

(15.) Cor. 1. The sum, in the ellipse, and the dif-
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Jerence in the hyperbola of the distances of any point
from the two foci, is equal to the axis.

For taking the directrix to the second vertex, and
adding or subtracting the antecedents and consequents
of the ratios = the determining ratios, we have,

AV + AU ( =) AP + PA
VF + UF (..=) FP + FP

(16.) Cor. 2. Hence in the ellipse F'B = 4 (Fig.
16. 17.)
and CF', = 4’ — B’
Or the line joining the focus and conjugate vertex is
equal to the semi-axis.
In the hyperbola, (joining the conjugate vertices)

B = VFU = CF* - CV»
or CF» = 4* + B
. CF = VB (Euc. 47.1.)

Or the line joining the conjugate vertices is equal to
the distance of the focus from the centre.

(17.) Cog. 8. The conjugate hyperbolas having the
same axes, and VB being the same in reference to
each, and the above property applying also, their foci
are at the same distances from the centre as the foci of
the first pair of curves.

(18.) CoRr. 4. In the equilateral hyperbola VFU =
A

(19.) Cor. 5. If at any point (as suppose ¢) we have
in the ellipse the sum of its focal lines greater, or in
the hyperbola their difference less than the axis, the
point £ lies out of the curve and above it.

For conceive a circular arc with centre F' and dis-
tance F't to cut the curve in ¢, then we have
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EllL >
Hyp, |Fit + Ft_ 2.4

Also Fg + (Fy =) Ft = 24
F,q:F,t or ¢ lies below #, and ¢ is above the
curve.

(20.) Com. 6. The tangent at any point in the
curve makes equal angles with the focal lines from
that point.

In PF', or PF, produced, take PH = PF, draw
a line through P, making equal angles with the focal
lines; in it take amy point ¢ and join tF, tF,, tH;
then from triangles, tH = tF

Whence (in the ellipse directly,)

(And in the hyperbola, in ¢F', taking tk = tH and
observing that since ¢kH is an isosceles triangle, the
< tkH is acute, and ... < FkH obtuse, we have
F.H > Fk:—)

Ellipse, tF, + tH > PF, + PH =24
Hyperbola, tF, — tH < PF, — PH =24

Therefore (19) any such point ¢ lies out of and above
the curve, or P% is the tangent at P.

————m——

(21.) Prop. Drawing a tangent at any point in the
curve, and perpendiculars upon it from the foci,

The distance from the centre to the right angle is
equal to the semi-axis.

(Fig. 16, 17, 18, 19.) Designating by r the point
of concourse of the tangent with the focal perpendi-
cular; join Cr, and producing F P, take PH = PF.
Then from the bisection of the angle by the tangent
we have
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tH = tF also CF = CF,
<. Cr is parallel to F, H
s Cr=43 F.H = A.

(22.) Comr. 1. Drawing the diameter parallel to the
tangent, meeting the focal line in E, we have also by
parallels

Cr = PE.

Or the semi-aris is equal to the segment of the focal
line cut off by the semidiameter parallel to the tan-
gent.

(28.) Cor. 2. The proposition holds good with
either focal perpendicular. Hence +r are points in a
circle on PU : and producing F',« till it meets Cr pro-
duced in S, F,.S = +H = F:

Or a circle described on the axis passes through the
extremities of the focal perpendiculars.

(24.) Cor. 8. Since Cr = CS, § is a point in the
circle, whence F,r . (F,§ =) Fr = VFU = B~

Or the semiconj. axis)* = the rectangle of the focal
perpendiculars.

et

DEF. The normal and subnormal are defined, as in
the parabola.

DEF. The central perpendicular is the.perpendi-
cular drawn from the centre upon a tangent.

CoRr. The central perpendicular is equal to the seg-
ment of the normal cut off by a diameter parallel to
the tangent, or PG = CR.

(25.) Prop. The normal x the central perpendi-
cular = semiconj. axis)’.

For from parallels and similar triangles we have
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Fy F,P PN
CE=PG~ C “F-

- (by 24) PG . PN = B*
B Fr.Fx

Or the normal =pa’ "= Lp_a_
(26.) Pror. Drawing an ordinate to the axis from
any point
The subnormal _ 3 latus rectum
Dist. from centre to ordinate™ semi-axis.

For by the right angled triangle PNM (Euc. VI.8.)
and (i. 33.)

NM NM.subtan.=PM,
CM~ CM . subtan.=VMU

cM
4

(27.) Cor. The segment of the focal line by a per-
pendicular from the extremity of the normal is equal
to half the latus rectum.

(Fig. 16.18.) For drawing NK perpendicular to
F'P, we have by similar triangles,

(PE=)A.PK=PN.PG=B=4.4L

« PK=%L.

L
4

Or the subnormal = } L .

(28.) Prop. Drawing any tangent, (as in the last
Prop.) and drawing also the vertical tangents to the

axis, meetmg it

A circle described on the tangent thus limited,
passes through the foci.

(Fig. 17. 19) Joining VT, V'T,, we have,

-
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' since ¥T, UT, = VFU
_PT_UF
“PF_ UT,

Therefore the triangles ¥ T'F' UT,F are similar :
and being right angled, we deduce the < TFT,.a
right angle; and therefore in a semicircle.

In the same way with the other focus.

(29.) Cor. 1. Hence drawing a diameter parallel to
the tangent

FPF, = TPT, = I (by i. 44.)
Or the parallel semidiameter)* = rectangle of focal
lines.

Focal line __ Parallel diameter
Focal perpendicular —  Conj. axis.

(80.) Cor. 2.

For by similar triangles we have,

Fx Fx . Fr Fr Fxr =B,
FPFP FP~FP.FP=D

In the ellipse F'P increases while ', P diminishes
oo Fs* e > FP
In the hyperbola F'P increases while F', P increases
o Fv o« < FP
Or the square of the focal perpendicular varies in the
ellipse more, and in the hyperbola less than the focal
line.
—————

(31.) Pror. The semi-axis x semi-conj. axis is

equal to any semidiam. x the central perpendicular upon
the tangent parallel to it. .



FOCUS—ELLIPSE—HYPERBOLA. 33
For since Cr is parallel to HF from the bisection
of the angle FPH we have, by (30.)

B_Fr_ .. , CB=PG
D FP-""Y)Taa
- 4. B=PG. D.

(32.) Cor. 1. In the equilateral hyperbola this be-
comes '

B'=PG. D= (by 25) PG. PN
~PN=D.

Or the normal to any point=the semidiameter.

(83.) Comr. 2. The areas of the parallelograms cir-
cumscribed about any conjugate diameters are equal.

Since any such area=4. (PG. D)= 4. 4. B.

(34.) Pror. The sum in the ellipse, and the differ-
ence in the hyperbola, of the squares of the axes, is .
equal to the sum or difference of the squares of any
conjugate diameters.

By Euc. II. 12. Since the triangles FPC FPC
have equal bases and a common altitude, and since in
the two curves (16) we have CF*=4*F B? and
(writing CP=G),

FP + F . P=2G" + (2CF*=) 24* T 2 B*
subtract,” + 2FPF,= + 21" (by 29.)

ing equals
(FP+ F,Py=4A4'=2G" + 2D 1 24" 7 2 B

.. 24° + 2B'=2G" + 2¢
D
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(85.) Cor. In the equilateral hyperbola, since
A=B,
2G"—-2Dr=0.. G=D.

Or a.ny conjugate diameters are equal.

" (86.) Cor. 2. In the equilateral hyperbola D being
a diameter through any point P, and CR the central
perpendicular upon the tangent at the same point, the
conjugate diameters being equal, we have from (31)

CR. D=4"

(37.) Cor. 3. In the equilateral hyperbola, drawing
an ordinate PM to the axis through P, and the tan-
gent meeting the axis at T, (see Fig. 19.) we have,

cM CM.CR _CR
CP=CP.CR=4'=CM.CT CT

Or the triangle CPM is similar to CRT, and < RCM
=RCT. And since the triangle CPM is similar, and
equal to that formed in like manner by the diameter
"through the opposite extremity of the ordinate pro-
duced, it follows that the central perpendicular coin-
cides with the diameter through the extremity of an
ordinate to the axis, opposite to that at which the tan-
gent is drawn. '

Or, in other words, if through the opposite extremi-
ties of any ordinate to the axis be drawn a diameter
and a tangent, they are at right angles.

(88.) Pror. Drawing an ordinate to any diameter
through the focus, this focal ordinate is a third pro-
portional to the conjugate diameter and the axis.

(Fig.17.19.) Taking a focal ordinate to the diame-
ter CP or D, and calling the conjugate G, by (i. 34,
36.) we have,




FOCUS—ELLIPSE—HYPERBOLA.

PM: G’
El DP—-CM°\ =D
Hyp.CM* - D

But by parallels and proportionals
El. Dr - CM o
Hyp. CM* - D» D
El. PE'— EF . = PE=4*
Hyp. EF" _PE:} =F,PF=G" (by 29.)
(by 22.)
Therefore ex @quo, and extracting the roots
PM_G
G 4
With the axis the focal ordinate and parameter coin-
cide; in other diameters they are different: some
writers call the focal ordinate the parameter.

(39.) DEF. The distance from the centre to the fo-

cus is called the excentricity.
SeInl-aX1%_—the determining ra-

Prop. The ratio —
excentricity

tio. .
‘For the construction being as in (14.) (Fig. 13, 14.)

PA L (AFVTFAU=)AU=)PU=CV
PF=}(FVzVF=)F,F =CF

(40.) Cor. Hence by proportionals,
PA’ cr:
PA* — PF* (ell.) } _ { CV: —CF" (ell) } _B
PF:— PA’ (hyp.) ) — L CF*—CV” (hyp.)
Whence by taking the same ratios in another curve, it
\ appears that if two ellipses or two hyperbolas have the
D 2
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same determmmg ratio, their axes are also in the same
ratio.

(41.) Pror. From the construction of the hyper-
bola by the directrix we obtain an easy mode of solving
the celebrated problem, ¢o trisect a given czrcular arc
geometrically.

(Fig. 86.) Let F'G be the arc to be trisected : draw-
ing the diameter AA | chord, trisect AF'; then with
Fas a focus, AA a directrix, and determining ratio =z,
describe an hyperbola cutting the arc in P:

VF 2 rp
FA=1"PA=1PQ -FP=PQ=QG,
or P, Q are the points of trisection.



PART II

COMPRISING THE PROPERTIES OF ASYMP-
TOTES—CURVATURE—AREAS, &c.

——————

SECT. 1.

PROPERTIES REFERRING TO THE ASYMPTOTES OF
THE HYPERBOLA.

D ————

DEFINITION. The diagonals of the circumscribed
rectangle produced indefinitely are called asymptotes.

(1.) Pror. The asymptotes never meet the curve,
though it approaches continually nearer to them.

(Fig. 20.) From (Part I. sect. i. art. 35.) VL*=
PRQ. Hence at any point R there must be an inter-
val PR, and if R be infinitely remote from the centre,
RQ is infinitely great, and therefore PR infinitely
small.

(2.) Cor. The same lines are asymptotes to the
conjugate hyperbolas, since the rectangle about the
azxes, and consequently its diagonals, is the same for
the conjugate hyperbolas. .

(8.) Scholium. The asymptotes may also be de-
fined as constructed by a reference to the cone, in the
following manner : '

Let there be a vertical section of the cone parallel to
the plane of the hyperbola. Let planes touch the
cone along the sides of this section ; the intersections of
these planes with the plane of the hyperbola are the

D3
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asymptotes to the hyperbola, as is easily shewn by
means of the circles parallel to the base.

(4.) Cogr. 1. The angle which the asymptotes form
with each other (towards the first pair of curves) will
evidently be,

> <
= }a right angle as A{ = }B.
< >

Hence equilateral hyperbolas are sometimes called rect-
angular.

(5.) Cor. 2. Since from (I. it 29.) the tangent at
all finite distances meets the axis between the vertex
and centre, the centre is the limiting pésition of its
concourse with the axis; but its corresponding limit of
the point of contact is at an infinitely remote part of
the curve. Hence the tangent has for ity limiting po-
sition that of coincidence with the asymptote. :

(6.) If any ordinate be produced to meet the asymp-
totes, the segments between the curve and asymptote -
on each side are equal. It appears in the demonstra-
tion of (1. i. 85.) that R,P=Q,,.

(7.) From any point in the curve let lines be drawn
to the two asymptotes, and from any other point lines
to the asymptotes parallel to the first : then the rect-
angle of the lines from the first point =that of the pa-
rallels from the second.

(Fig. 21.) Taking any points P, Q, draw PS || QS
and PX || QZ; then by sim. as

QS QR=P, P:
PS=PR=Q-@s "S- Q& =PS.Px.

(8.) If these lines are respectively parallel to the
asymptotes, the parallelograms formed are equal ; since
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the sides about the=angles are reciprocally propor-
tional.

(9.) DEF. Asymptotic segment, or abscissa. The
segment between the centre and any point in the
asymptote.

Asymptotic secant, or ordinate. A line from any
point in one asymptote to the curve, and parallel to the
other.

(10.) The asymptotic segments are inversely as the
asymptotic secants.

PS _ Qz= (byls) CS,

For by (7) 35! = P =(by]s) CS

(11.) Cor. 1. This property enables us to prove a
point before alluded to. (I. i. 41.)

From (I.i. 38.) The lines joining the vertices of any
"conjugate diameters are parallel to one asymptote and
bisected by the other; consequently their kalves on
one side of the asymptote are asymptotic secants to the
Jirst curve, and (by the above) are therefore inversely
as the segments :

But their equals on the other side are in the same
ratio:

Also the asymptotic secant through the vertex of the
axis has its other extremity in the conjugate curve :

Hence the extremities of all the parallels to it, that
is, the extremities of the conjugate diameters, lie in the
conjugate curve.

(12.) Cor. 2. The asymptote is the limit between
those diameters which meet the first pair of curves, and
those which meet the conjugate curves.

(18.) Cor. 3. No diameter can be parallel to an

D 4
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asymptote. And since every tangent is parallel to the
diameter conjugate to that through the point of con-
tact, no tangent can be parallel to an asymptote.

(14.) DEF. Hyperbolic sector. The figure con-
tained by two semi-diameters and the intercepted
curve.

Hyperboli¢ trapexium. The figure contained be-
tween two asymptotic secants and the intercepted
curve.

(15.) The sector=the trapezium on the same curve.

For o CS,Q=S5CQ,, each being=14 the equal paral-
lelograms (8). .'.Each + curvilinear area 2QQ, — com-
mon A CSz are equal; or sector = trapezium.

(16.) Let a vertical tangent and any ordinate to a
diameter be drawn ; and asymptotic secants from the
vertex and each extremity of the ordinate : then,

The segments are in continued proportion.

1st. D being the vertex, and PQ the extremities of
an ordinate, we have

CS,=(||s)S.R

S.P CS,
CS,=(||s)S,T

(=sim. as.) SD =(10) CS,

and conversely if the segments are taken, proportionals
P,Q, are the extremities of an ordinate | tan. at D.

2dly. With any other || ordinate P,Q, we have in the
same way,

cs _ CS, whence CS CS,
CS,~ CS, (by proportionals) €S, ~CS,

but if @, be so taken that DQ, is || tan. at @, we have
“also
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g‘g g§’ which, above, = gg—_ %g

(17.) The trapezia on the curves intercepted at the
opposite ends of two ordinates, are equal.
ACMP = CMQ, and curvilinear area PPMM =
MM.QQ..
*.Sector CPP, = sect. CQQ,, and .(by 15) trapez.

PP 8.5, =QQ.SS..

(18.) Segments in geometrical progression give ¢ra-
pezia in arithmetical.
Taking the segments CS, CS,, CS,, &c. continued pro-

portionals, since with any segments proportionals we
have PQ || DT || P,Q..
.".Trapez. 8§8,=8,5, and §,8,=8,5,; also §S,=
S.S,.

..the differences are=, and the trapezia S5, S,
S§S,, &c. are in arithmetical progression.

(19.) Prop. A line parallel to an asymptote which
meets the curve of the hyperbola, cuts it in one point,
and never meets it again.

For since the curve approaches indefinitely near to
the asymptote, no parallel to the asymptote can lie be-
tween it and the curve without meeting it; neither
can it touch the curve (13.); consequently such a pa-
rallel must cut the curve, and being produced it never
approaches the asymptote, and therefore never meets
the curve, which is continually approaching nearer to
the asymptote.
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(20.) These lines are thus analogous to the diame-
ters of the parabola, and they also possess a further
analogous property referring to the directrix : viz.

If a line parallel to the asymptote of an hyperbola
be drawn through any point to meet the directrix, its
segment between the curve and directriz is equal to
the focal line of that point.

(Fig. 85.) CT being the asymptote, draw the other
diagonal UB and construct PF, PA, as in Part I.
sect. ii. ; then from (I. ii. 40) we have

PF CF.=UB=CT
PA™= CU )

At P drawing PK to meet the directrix, i)arallel to
the asymptote 7'C, we have similar aAs PAK, CTU ;
whence the ratio above becomes

PK () PF

=T PA .

(21.) Since this holds good for any point in the
curve, (designating by PK, LK, &c. lines from points
in the curve to the directrix, parallel to CT,) at L,
where F'L, LK, lie in one line, we have F'L = LK.

And F'Q being the focal ordinate,

" FQ=QK=2FL,or FL=}L.

Properties exactly similar to those of the parabola.
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SECTION II.

1. SIMILAR CONIC SECTIONS.

————t

DEF. Similar conic sections. Two sections, such
that any rectilineal figure being inscribed in one, a simi-
lar figure may be inscribed in the other.

(1) Two conic sections are similar if their deter-
mining ratios are equal.

(Fig. 22.) In two conic sections of the same kind,
the determining ratios being equal, and P any point in
one, take = in the other, so that < PF M =xFu : whence
we have

PF xF PF _xF
FM=TF. AM = 5%
} PF _ =F
"(AMFMF=)FA™ (utuF=)F%

Again ; take any other angle PFM, and = Fpu equal

to it ; then, as above, we have
FA _FP_FP, FP . &.

FP Fx FP, Fn, &c.
FP.=Fx’ PF,-Fx,

Thus joining PP,, zx,, P,P,, =,x,, we have a seriesof A s
with one angle equal, and the sides about the equal
angles proportionals. Hence the as are respectively

or
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similar; and therefore the whole figures made up of
any number of them. Hence the two curves are by
Def. similar. 4

(2) Cor. All parabolas are similar.

Since the determining ratio in all parabolas = 1.

(8) Cor. 2. Ellipses or hyperbola are smular if the
ratios of their ares are equal.

For from (I. ii. 40.) it appears that equal determm-
ing ratios give equal ratios of axes. The curves are
.. similar on the former principle.

et ——

(II.) VARIATION OF RADIUS VECTOR.

" (1) Calling the radius vector (or focal line) R, and
the angle it forms with the axis ¢,

3L
In the parabola, K = TTcosd

(Fig. 12.) The construction being as in Part I. Sect.
II. we have
PF= AM=2VF +(FM=) PF .cos.< PFM
=2V F — PF cos.< VFP
1L

. ividing, PF=_ 2~ _
transposing and dividing, PF 1 +cos. ¢

(2) In the ellipse and hyperbola, calling the semi-
axis 4, and the excentricity or distance from centre
to focus E,

iL

E
1 +Zcos. 1/

(Fig. 13,14.) The construction being as in (L. ii.)
we have, .

R=
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PF _FC
AP-AF+FM ~CP

(Byl.32) CV*=CF:+CF .FA...CF.FA=R"
Hence, multiplying extremes and means,

PF.CV=(AF.FC=)B"+FC.(FM=)-PF.
cos. < VFP

Whence transposing and dividing,

_ B
~PF= CV + FC . cos. §

Which dividing every term by C¥V = 3L
1 + 2-' « COS. Ill

(3) Cor. 1. This last expression evidently includes

that for the parabola if we substitute for % its value

[, I

(4) Cor. 2. In any of the curves, if we conceive
PF produced to meet the curve again in @, the angle
¥ corresponding to the position QF' will (by trigono-
metry) have its cosine negative, and the formula will
become QF' = 3L

1—= cos. ¢

A

Hence we have,

1 1 l—gcos.¢+1+§cos.¢ 2
PE'QF~ 1L =IL
_ . QF+PF
= (by fractions) ~PFQ

. (QF + PF) }L= 2. PFQ.
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Or the semi latus rectum is an harmonic mean be-
tween the segments of any chord through the focus.

(II) GENERAL PROBLEM.

~ Three lines converging to a given point being given
in length and position, to describe a conic section
through their extremities.

(Fig. 28.) Join PP,, produce, and take —— PL _PF

PL~- PF
. . . PN PF
Similarly with PP, . ........ PN= 1—,—

Join LN, and draw a perpen(hcular through F.
Also draw perpendiculars AP, AP,, &c.

Then by sim. As PL AP PF

" PL= AP, = PF *¢

A . *
Take —V% = same ratio. If this = 1, the curve is

a parabola

AU
Ifit = =
i - 2 it is an ellipse : in which case take TF=

same ratio.

If = < it is an hyperbola: in which case take
<

AU . . T
TF = same ratio, anfi .. in the opposite direction.

In each case we have to find by trigonometry from
the given lengths PF, &c. and the given angles at
which they meet in F,

1st. The sides PP, P,P,

2dly. The sides AP, AP,, &c.

And AV VF, &c. which give the dimensions of the
curve in terms of the given quantities.
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SECTION III.

AREAS OF THE CONIC SECTIONS.

—el——
PARABOLA.
———

(By the method of Exhaustions.)

DEeF. Drawing a vertical tangent to any diameter,
and any ordinate, the parallelogram formed by these
lines with parallels to the diameter through the extre-
mities of the ordinate, is called the circumscribed pa-
rallelogram of the portion of the parabola cut off by
“that ordinate.

(1) Cut off an area by an ordinate to any diameter;
and draw chords from the vertex to the extremities of
this ordinate. Calling the area of the triangle thus
formed 4,

The parabolic area = 3 A = 3 circumscribed pa-
rallelogram. '

(Fig. 24.) P,V Q, is an area cut off by the ordinate
P.Q, to any diameter VB. Bisect P,B in E; draw
PE parallel to the diameter: join P,V QV; a
P,VQ, = A. Then we have by (I. i. 2.)

yVm pPM: }
VB=PFB ~
Supposing a tangent drawn at P, we have by (I.i.
24.)
VM = VT=P_%_% AVPM,
MB-VM=ME~*~ AVME
~.aVPP, =} VPB
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and AVPP, + 7QQ, =1 VPQ,=1A4.

In like manner we ﬁhd, supposing the chords PP,
&c. drawn,

AaPP + PV +7Q +QQ,=1.1.4.
Whence the sum of all the triangles similarly formed

=4 + 2 A e = (Wood's Alg.224,) (lim) 4.4,

But the parabohc area is also the limit of the sum of

the triangles .". it = $ 4. '
or area = % . 4 circ. 1 = § circ. [

(2) Hence the areas cut off by ordinates to different
diameters, with equal abscissz, are equal.

(Fig.-25.) Take UM,=VM, draw P,E at right
angles, and from the parallelism of the tangent A.
P.ME is similar to F'T%.

B (I ii)P,M-:=UM,.FU_FU2=FT1_
YOS FT T B T

- P.M:
(sim. As) PE (o) PIT
.*. by = bases and altitudes A UP,M, = A VPM.
Whence the areas, which are respectively = %4 are
likewise equal.

+

AREAS.

———eelf—

PARABOLA, ELLIPSE, AND HYPERBOLA,
(By the method of prime and wltimate ratios.)
(8) If, as in (I.i.14.) we take any conic section, and

with the same axis and vertex describe a second curve
of the same kind, and draw ordinates to the two curves
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through the same point, the areas cut off by those or-
" dinates are in ratio of the square roots of the latera
recta of the two curves. '

(Fig. 26.) Taking several ordinates at equal dis-
tances, and drawing parallels to the axis through P =
&c. we have

PM_P.M, B M,
_OOPM,+ P M, +&c =(hm)area VMP,
0 =M, + 3 =, M + &c. = (lim.) areaVl@

PM=L. VMJZ;I
But MU
sM*= x. VM'Q—A

. PM JL _area P
=M™/, .area =

(4) Cor. 1. In the same ratio also are the areas or
“ sectors” cut off by lines from the focus of one of the
curves to the extremities of the ordinates.

From the above we have

PM _AFPM _area VPM + AFPM = sector VFP
sM~ AFzM ~ area VzM + A FxM = sector VFx

(5) Cor. 2. In the same ratio are the sectors simi-
larly formed by lines from the common centre of the
two ellipses, or hyperbolz.

PM A PMC + area VPM = sector VCP
xM~ A sMC + area PxM = sector PCr

And the same will hold good with lines similarly
drawn from any point in the axis.

(6) Com. 8. Let the second ellipse be a circle; or
the second hyperbola equilateral, then
E
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area ell. or hyp. B AB=R*_area®on R
=— =(ell.)
areaQoreq.hyp. 4
(7) Cor. 4. Hence the area of the first ellipse =area
of a circle whose radius is a mean proportional to the
axes.
(8.) Cor. 5. The areas of ellipses are as the rec-
tangles of their axes.

Since area ell. = area @ oc R? oc A‘. B.

A* ~ areagon A °
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SECTION 1IV.

CIRCLES OF THE SAME CURVATURE WITH THE
CONIC SECTIONS.

+—

(1) DEF. Subtense of Contact. Take an arc from
the contact of any curve with a straight line, and at
its other extremity draw to the tangent a parallel to
any given line through the contact: the segment of
this parallel between the curve and tangent is called
the subtense.

(2) DEF. The circle qf the same curvature to any
point in a given curve, is a circle such, that if it have
a common tangent with the curve at the point, the
limiting ratio of their subtenses through the same
point will be a ratio of equality.

(8) Pror. There can be only one circle of curva-
ture at the same point; and

(4) In different circles the curvature is inversely as -
the radius.

In Fig. 28, regarding the circle only, and =# the sub-
tense of contact being supposed parallel to the dia-
meter PW, and zP joined ; from the right angles, at
t and in the semicircle, and from the angle in the al-
ternate segment, we have similar triangles =¢P, s WP;
whence
= (lim) arc =P*

PW

But in the same circle, if =P be given, this ratio is
E2

’t=wP'
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constant for all points; and .in different circles it is in-
versely as PW.

(6) In any circle taking a chord and a small arc at
its extremity, at which also a tangent is drawn and
limited by a subtense, (as in Def. (1). the chord has

for its limit

subtense’

Let the subtense = be now supposed parallel to any
chord PS': suppose =P =S joined: by parallels and
alternate segment A Pat is similar to =PS': hence
xP? = (lim.) arc =P*

4

If we now suppose the circle to be a circle of curva- °
ture to any of the curves at P, (by Def.) zP and &t in
the circle = (lim.) =P and = in the curve.

PS =

s

PARABOLA.

(6) Chord of the circle of curvature through focus
= the parameter to the point of contact.

(Fig. 27.) Pm being the diameter of the parabola
through P, PW that of the circle of curvature; PnR
the chord through the focus; we have similar As Pnm
PFT': whence, and from (1. ii. 4.) '

Pn=Pm=rnt.
P = (lim.) am*= 4FP . Pm
Pm T

Hence (by 5) PR=

= parameter to P. :
latusrectum x focal dist.)?
focal perpend.)
Drawing the focal perpendicular, by similar As PWR
PFt, and (1. ii. 8.) we have

(7) Diameter of eurvature =
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PW = PR.FP.FPVF=4VF.FP: L.FPs
Fr- . FP.VF -~ Fr

2FP* QFP;:
(8) Cor. 1. § PW= = T
(9) Cor. 2. At the vertex, the chord and diameter
of curvature coincide, and each = latus rectum.

At ¥V, F'P becomes perpendicular to the tangent:
PR=PW=4VF=1.

normal)?
GLy
By Part 1. Sect. ii. Arts. 5 and 8, we have
N:=8 Fv=8VF:. FP: 2FP+
GLy =4V F" = PFy

Hence the radius of curvature is as the cube of the
normal.

(10) The radius of curvature =

=3 PW (by 8.

P ——

ELLIPSE AND HYPERBOLA.

(11) Drawing a diameter through the point, and its
conjugate,
2(semi-conj.diam.)?
semi-diam.
The chord through the centre P.S meets the curve
or opposite curve in K, and CD being the conjugate
diameter, we have .
CD* am’ = (lim.) = P?
CP'~ PmK= (lim.) »t.2CP

.. PS= 2_9_D_’(b 5)

Chord of curvature through centre =

2 semi-conj. diam. )

(12) Diameter of curvature = central perpendicular.

E3
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We have similar As PCG PSW : whence
2CD 2CDr

cP _ _
PW=pg - F5=)"cPr="Pa
(13) Cor. 1. At ¥ this = ?231' =L;

Or, at vertex, diam. of curv. = latus rectum.

2.4°
B

(14) Cor. 2. At B it =

. . 2 semi-axis)’
Or, at conj. vertex, diam. of curv. = ———)—
semi-conj. .

2 (semi-conj.diam.)

(15) Chord of curv. through focus =

semi-axis.
We have similar As PEG PRW : whence
_ PG _aCD_2CD
PR=pp—4 PW=)"pg ="4

(16) Cor. At B this becomes = 2 A,
Or, at conj. vertex, chord through focus = axis.

normal)$

125

Whence the radius of curvature is as the cube of the
normal.

For taking the expression (12) ; from (1. ii. 31.) and
miltiplying by PG’, we have

(17) Radius of curvature =

2CD* . 1 _ v ooxy IV _ N?
PW="p~ = 24'B (pg=) (Lii.25) F-0Ly
(18) Cor. This also (multiplying by I¥)
e D _ L FPq g0,

A B3 I
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Or in all the Conic Sections, diameter of curva-
ture = latus rectum x focal disti’
- focal perpend.)*

(19) In the equilateral hyperbola at vertex, the
curvature is the same as in the circle on the axis,
(from 13.) : :

At other points, radius of curvature is as the cube
of the semidiameter through the point, (from I. ii. 82.)

E 4
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APPENDIX,

CONTAINING

DEMONSTRATIONS OF THE FUNDAMENTAL PROPER-
TIES WITHQUT ANY DEDUCTIONS FROM THE
CONE EXCEPT THOSE REFERRING TO
THE AXIS.
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No. L

(1) For the sake of those students who may pre-
fer dispensing altogether with oblique deductions from
the cone, we will here give a demonstration of the fun-
damental proposition in the ellipse and hyperbola, that
four tangents, parallel two and two, are proportionals,
which was before deduced from the cone, and from
which the proportionality of the squares of the ordi-
nates to the rectangles of the abscisse immediately fol-
lows in the ellipse, and several other important proper-
ties in both curves. .

el

ELLIPSE AND HYPERBOLA.

(2) Assuming the construction of the curves by the
directrix, if two tangents meet, the line joining their
concourse with either focus forms equal angles with the
focal lines to the two points of contact.

(Fig. 80.) PT P,T meet in T. Join TF PF
P,F PF,.
Produce F'P and make PK = PF,
... FP, ..... P K= P,F,
Join TK TF, TK..
Then by (L. ii. 15.) F'K = FK..

From the bisection of the angle by the tangent and
the equal sides of the triangles, we have
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TK = TF,, which similarly = TK,
. AKFT=K,FT and < PFT =<P,FT.

In the hyperbola the demonstration is exactly the
same, except that PK ‘is cut off = PF, and PK, —
P,F, (Fig. 31.)

The same property might be proved in the parabola ;
but we shall presently shew a shorter mode of deduc-
tion without reference to it. '

(2) Scholium. In order to establish the next propo-
sition, we must have recourse to a theorem which,
though usually announced in a form which may be
considered not strictly geometrical, is yet in reality
perfectly so; viz. that « the sides of a triangle are as
“ the sines of the opposite angles.” It would be very
easy to put this theorem into strictly geometrical lan-
guage by a definition. of the term sine; and the de-
monstration of it depends upon the simplest principles
of the third book of Euclid.

(4) The tangents meeting each other are inversely
as the sines of the angles F'PT FP,T.

PT sin. PFT FT sin. FP,T .
FT =sin. FPT’ P,T "~ sin. PFT=PFT

.PT _sin. FP,T
""P,T ".sin. FPT’

(5) Let PT be produced to meet in 7', a third tan-
gent parallel to T'P,, and therefore at the other vertex
of the diameter through P,. The four segments of the
tangents are proportionals.

Since the focal distances form equal angles with the
tangent at any point, and the lines from the vertices of
a diameter to the two foci are parallel, and the vertical

tangents are also parallel, hence
<FPT,= <FP,T.
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Hence we have from the above,
PT, _sin (FPT,=) FP,T PT
PT, sin FPT.=sin FPT "=PT
(6) We have thus established the fundamental the-
orem before deduced from the cone, without reference
to the solid, but dependent upon the description of the
curves by the directrix, and the bisection of the angle
by the tangent which follows immediately from that
construction. The student who prefers this method
will readily perceive in what order to insert the above
articles.
This method is followed in Peacock’s Conic Sections,
second edition.

i —

PARABOLA.

(7) It remains now to deduce the primary property
of the parabola, without reference to the cone. This
is done as follows: upon the assumption of the con-
struction of the curve by the directrix and the bisec-
tion of the angle of the focal radius with the diameter
by the tangent.

This construction, however, as before given, (Part I.
Sect. ii.) assumes the subtangent = 2. the abscissa.
The student, therefore, who adopts this mode of treat-
ing the subject must commence with the construction
by the directrix, assuming that as his definition of the
curve.

(8) Any diameter of a parabola bisects its ordi-
nates. ’

(Fig. 82.) VM is any diameter of the parabola, V'T'
and PMQ its vertical tangent and ordinate, meeting
the axis produced in 7'and O. VM produced meets
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the directrix in 4 : and a parallel through Q meets it
in R, and one through Pin E, all at right angles to
it. Join F'4 meeting V7T in K, and PO in G.
join PF, QF. Then, since PF=PE, and QF =
QR by the construction of the curve,

A circle with centre P and distance PF touches the directrix at E.

.............. Q.........QF..«......0..c.... R.

Let the first circle cut AF in H.

From the bisection of the angle 4V F by the tan-
gent we have AK=KF ;
and VK perpendicular to 4F. ... PG, which is pa-
rallel to it, is also perpendicular; and consequently
HG=GF. Join QH : hence QF=QH, or the
second circle also passes through H.

. RA*=FAH=AE".

Whence by parallels
QM =PM.

(9) If from any point in the parabola an ordinate to
any diameter, and a perpendicular on that diameter
produced be drawn, then the perpendicular)’=ab-
scissa x 2. distance from focus to directrix.

The construction of the last art. remaining draw
PL, a perpendicular from P on the diameter pro-
duced. S

Then from the right angles we have similar tri-
angles F'4AB, TKF, OGF. Whence

F4_FT oT="M
FB FK T GK .
: . F4.GK=VM.FB;
but since FA=2FK,and FH=2FG... AH-_2 GK
. . FAH=FA4.2GK=VM.2 FB.
- Hence PL'=AE*=(byo) FAH=VM .2FB.

= (proportionals)
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(10.) Cor. Hence F'B being a constant quantity,
the squares of any such perpendiculars are as the cor-
responding abscissz.

(11.) Cor. 2. Take any other ordinate to the same
diameter P,M,, and draw the perpendicular P,S'; then
the A M PL is similar to M,P,S, and we have

PM: _PL (above rm

PM: PS™ VM,
Or the abscisse are as the squares of the ordinates.

(12) We have thus deduced the fundamental pro-

perty of any diameter of the parabola from the con-
struction by the directrix. This includes the proper-
ties of the axis: and the identity of the curve, with
that formed by the section of the cone, is immediately
established.

This method is taken from T. Newton’s Conic Sec-
tions.
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No. II.

———

The following articles comprise a brief outline of
another mode of deducing the principal oblique pro-
perties in the ellipse and hyperbola independent of the
cone. But for a complete view of the method and its
application the student is referred to «“ A Geometrical
« System of Conic Sections for the use of the Mathe-
 matical Students at the Royal Liverpool Institution,”
published at Cambridge, 1822. from which the follow-
ing outline is taken.

P —

ELLIPSE.

(1.) (Fig. 33.) Describe a circle on the major axis.
P being any point in the ellipse join CP, and in it take
any point L : through L any secant QQ, passes,
and meets the axis produced in K.

Ordinates to the axis through @ and Q, meet the
circle in BR,.

Join KR, KR,, these lie in one line;
for we have

%} = (sim.As) {%—’———ﬂ[’“
m} = (by curve) {1;[_313;

hence, and from the right angles at MM, the os are
equiangular, and thence KRR, is one line.
Through L draw an ordinate meeting KR in H ;
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join CH, and let it meet the circlein §. The ordinate
through P meets it also in §';
MH MR, mS
for ML= Q.~ (by curve);P.
From this construction then we have

and this ratio .gg depends solely on the position of P,

and is independent of the position of QQ,.
Also
RHR,=SHS,_ by sim. as\ KR* ¢A ratiqfwgioch is
QLR and comp. / KQ: | Siven in pasicion,
PLD _ CP* KR’
QLQ, CS" K@
In the same way, if we had taken any other secant,
Q,Q, passing through L, we should have a ratio com-
(8) o

pounded of —_ which remains the same, and a new

Cs:

. s
ratio fQ~; : or,

QLQ, _KQ KE;
QLQ, KFR K@

Hence in general, if two straight lines meet an el-
lipse, the rectangle contained by the distances of their
intersection from the points where one of them meets
the curve, is to the rectangle contained by its distances
from where the other meets the curve in a ratio, which
is given if the lines are given in position.

' F
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(2.) If LQ be a tangent at the point formed by the
coincidence of @ and Q, supposing it to meet another
secant or tangent at L, the same demonstratiop will
hold good taking L& instead of QLQ,, and consider-
ing the points B, in the circle also to coincide.

(8.) If we take any other secant or tangent parallel
to QQ, and make a similar construction, we shall have
the as MQK, MRK, similar to the analogous new

AS.

And hence the rectangles of the segments of the pa-
rallel secants are as the rectangles of the ‘segments of
the second pair, or the squares of the tangents ; and.-.
the tangents simply are in the same ratio.

e tlr——

HYPERBOLA.

(4.) In the hyperbola these propositions also hold
good, and may be demonstrated by an extension of the
principle of the demonstration in (I. i. 36.)

In Fig. (20) suppose PQ, were not bisected in. M, ;
but conceive some other point X to be where the
diameter CX, to which it is an ordinate, meets it.
Then (by Euc. 2.) )

PM.Q=PX - XM
= (R, X*-R,P;,)— (R.X* - R, My,
= R,M,p, —R,PP,.

Suppose T'G+ any parallel meeting the curve in G ;
then by triangles

cM: R, M,,
CG* TG+ R,Pp,.
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Hence

CM-CG'=GMK RM,, —R.Pp,=PMQ, .
cG = R,.Pp,z TG~

Or,

Z"g: ZJA‘[I%_ (taking any other parallel secant)
PMQ,

) GM K

In the same ratio would be the rectangles of any other

two parallel secants passing through M. M.

The same demonstration would hold good, if the se-
cond secant were in the opposite hyperbola.

It also holds if the points M, M, lie without the
curve: as in Fig. (34).

(5.) It also applies, if we conceive the secants to be-
come tangents ; the squares of the tangents, and there-
fore also the tangents themselves, forming the terms of
the proportion.

F2
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No. III.

ON THE MECHANICAL DESCRIPTION OF THE
CURVES.

~e = :

(14.) The mechanical descriptions of the curves will
have been obvious from I. ii. 2. for the parabola; and
for the ellipse, and hyperbola from I. ii. 15.

For the parabola, a ruler having a right angle, moves
along a directrix or fixed ruler. At some distant point
in the perpendicular part a string is fixed, equal in

. length to ‘the distance of that point from the right
.angle. The other extremity of the string is fixed by a

in in‘the point assumed as the focus. While the per-
pendlcular ‘i, the position of the axis, the string will
evidently exbentd as far as to half the distance between
the focus and the directrix, where it is doubled back.
At the point where it is doubled a pencil being placed
marks the vertex; and if as the perpendicular moves
parallel to itself along the directrix, the string be kept
stretched by the pencil at the point where it is doubled,
the portion of the string between the focus and that

point will always be equal to the portion of the per-

pendicular between that point and the directrix, or the
pencil will trace out a parabola. ‘
The ellipse is readily described by taking two fixed

o Ji

points as foci, and keeping a string of given length,

fastened at each focus, stretched by a pencil whese mo-
tion constrained by the string will trace an ellipse. -

For the hyperbola a ruler revolves about one focus,

-
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and at the other a string is fastened, which is also fixed
at a distant point in the ruler, and of such a length
that the ruler exceeds it by the major axis. Then a
variable portion of the string being always kept coinci-
dent with the ruler, the difference between the part of
the ruler devoid of string, and the length of string be-
tween the focus and the point at which the string sepa-
rates from the ruler will be constant, and the string
being stretched by a pencil at that point, the pencil
traces out the hyperbola.

(16.) If a similar construction be made to that for
the parabola, except that the ruler have an obligue
instead of a right angle, it is evident from II. i. 20. that
a curve will be traced out which will be an hyperbola.

The thechanical construction of the ellipse by means
of the property (I. i. 15.) is perfectly obvious. Two
rulers are fixed at right angles, with a grove along.
each: a third moveable ruler has two pegs fixed jn it
which intercept a portion equal to the sumor iffer-~
ence of the semi-axes of the ellipse fraposed: these
move constantly in the groves, whilst at a distance be-
yond one of them, equal to the semi-conjugate axis, a
pencil is fixed which traces out the ellipse. This in-
strument is called the trammel, or elliptic compasses.

F3
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PREFACE.

'THE following introduction to the gemeral
algebraic doctrine of Curves is annexed to the
Conie Sections as a distinct tract. It could not
have been properly united with it, or presented
as a second part without a considerable altera-
tion and extension in the plan of both.

In its present form, however, it is hoped that
it may be found useful to the student ; as sup-
plying a part of the elementary course, on which
a short, simple, and systematic treatise appears
to be wanting. Most writers on the Fluxional
Calculus assume the student’s previous acquaint-
ance with the theory of Curves; but the inci-
dental slight accounts of that theory, which
may be found im several works of old established
reputation, are very incomplete, and fail in
giving that systematic view of the subject, which
it is the main excellence of such investigation
tp afford. Whilst, on the other hand, some re-
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cent treatises, as well from their extent as their
abstruseness and obscurity, are ill suited to the
purposes of the learner.

In the present attempt to supply this defi-
ciency it has been the author’s object to study
brevity, as far as consistent with perspicuity,
and the wish to explain every thing in the most
familiar manner. It must be apparent that no
treatise of this kind can lay claim to much ori-
ginality in its materials ; but the author trusts
that he shall be found to have adopted some
improvements in the selection, arrangement,
and form 'of discussion.

As to the extent of the investiga:tion, it does
not pretend in any case to go further than the
‘mere elements of each curve, so far as they can
be deduced by common algebra; the object
being simply to furnish the student with those
primary notions of the nature of curves, pos-
sessed of which he may proceed in an unbroken
and systematic course of demonstration to their
various properties deduced by the application
of the Differential Calculus: examples of which
are so abundantly supplied in every fluxional
treatise. Wherever any locus has a geometri-
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cal construction, it is given; and the student
has it in his power, if he prefer it, to commence
with this construction, and deduce the geome-
trical properties. A few of the most remark-
able of these are stated, while reference is given
to sources of further information respecting
others.
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INTRODUCTION.

ON INDETERMINATE EQUATIONS AND
THEIR LOCI.

et —
GENERAL PRINCIPLES,
et

(1.) DEFINITION. If we have an equation involving
two quantities z, y, supposed unknown or variable, with
certain others 4, B, C, &c. supposed known or con-
stant; since such an equation will not give any ome
determinate value of z or y, it is called an indetermi-
nate equation.

An indeterminate equation will however give results
of this nature; for every value assigned to the one
variable, we can deduce the corresponding value of
~ the other, involved in a certain way with known quan-
tities: or, in other words, we obtain the law which
connects the variation of the one variable with that of
the other ; the nature of such law being dependant
upon the constant quantities, and the powers and com-
binations of the variables, in the given equation.

Indeterminate equations may be applied to various
descriptions of problems ; but our present object is to
consider only one such application, which is comprised
in the two following cases:

(2.) 1st. Let there be assumed two straight lines of
indefinite length cutting each other at a given angle;
we may then suppose the two variables, in a given in-

G
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.2 COORDINATES.

determinate equation, to represent portions measured
off upon these given lines from the point of their inter-
section ; such that, assuming any portion of one line as
a particular value of z, the portion of the other line
shall represent the corresponding value of y as deter-
mined by the given equation.

(Fig. 1.) DEF. Two fixed lines thus assumed are
called axes, as the lines XX, YY. The point of in-
tersection O is termed the origin. The angle at which
they are inclined is called tke angle of ordination, re-
presented by the symbol < » and the portions zy
measured off respectively on the axes, which represent
corresponding values of # and y in the given equation,
are termed coordinates.

Hence it is evident, that if, assuming any corre-
sponding values of z# and y we draw through their ex-
tremities lines parallel to the axes respectively, we shall
have a parallelogram, the sides of which are equal to
the values of x and y; and which being given in
length and position determine the position of the point
2 in the plane of the axes. If other successive values
were taken, we should have a succession of points pp,,
&c. determined in position. If a number of such points
~ be conceived determined,- indefinitely near to each
other, they will lie in a certain line, straight, or curved,
dependent upon the conditions of the equation deter-
mining the values of the variables : such a line traced
out by the successive positions of the point p is termed
THE LOCUS of the given equation; and an equation
applied to determine in this manner the Jocus, is called
an equation of coordinates .

(8.) 2dly. The position of any point p in a plane

2 The application of indeterminate equations in this way to con-
struct curves of all kinds was the iavention of Des Cartes.
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may be determirfed either by measuring its distance in
two given directions, (as above,) or its distance along
one given line, forming a known angle, with some
other given line.

If then in an indeterminate equation one of the va-
riables represent a distance measured along a line, and
the other the angle formed by that line with another
given in position, we shall equally be able to trace out
the locus.

Thus (Fig. 2.) let OX be a fixed line given in po-
sition, and about the point O let the line Op revolve,
forming with it a variable angle, and at the same time
varying in length. The point O is termed the pole ;
the variable length the radius vector, designated by
the symbol r ; and the variable angle by the symbol

¢0. An equation expressing the relation between
these two variables is called a polar equation®.

In applying equations to coordinates it will be under-
stood, according to the common principle, that if values
of x measured on one side of O are considered +, those
measured the other way are —. And similarly, values
of y above O are +, and those below —.

These two kinds of equations are often expressed
briefly and generally by the adoption of the term func-
tion, to signify an expression whose changes of value
depend wholly upon the values given to one or more
variables involved in it. This is commonly represented
by the symbol f placed before the variable, and distin-
guished from a coefficient by brackets. Thus an equa-
tion of coordinates is expressed by the symbols y=£(z).
A polar equation .. .......... ... ..., r=f(6).

b The variables r and 6 are by some writers called polar coordinates ;

but the use of the term appears improper, and likely to lead to con-

fusion,

G 2
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4 TRANSFORMATION OF COORDINATES.

The ordinate, in the one case, being % function of the
abscissa ; the radius vector, in the other, a function of
the variable angle.

ON THE TRANSFORMATION OF COORDINATES.

(4.) If we have a point whose position is deter-
mined by being referred by coordinates to given axes,
it is evident that it may at the same time also be con-
sidered as referred by other coordinates to any other
axes.

If we have given an equation expressing the coor-
dinates of a locus as referred to one system of axes, it
is often desirable to find its equation as referred to an-
other system ; we have therefore to shew how such a
second equation may be deduced from the first. This
operation is called the transformation of coordinates. .

(5.) (Fig. 8.) Let

The first axes be X, ¥; origin O; angle of ordi-
nation £ w:

The. second axes X,, ¥ ; ongm O, ; angle of ordi-
nation £ o,

The coordmates of preferring to the first axes ; z,y:

..................... the second axes; z,, ¥,
The coordinates of the second origin, ........ Zos Yor

Also let the angle formed by two lines, as z and y,,
&c. be expressed by writing £ xy,, &c.

Then the object is to find expressions for z and ¥
in terms &f x,, y,, and the given angles, or the con-
verse ; which may be done thus :

Drawing the parallels pgr, mn ; also O, nr, mg; we
have
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* Y=Y +qr+9p
z=x,+ 0, n +nr.

And the sides being as the sines of the opposite
angles, we have

In the Ao O,mn mn=gr _sin. zz, Oh sm..r,y

z, ~ sin.o’ 1z, sin e
gp_sin. zy, nr=mg_sin. ¥y,
Armg { sin.e * gy, sin. w.

Whence substituting these values of ¢r, qp, O, nr,
we deduce
z, sin. zz, +y, sin. oy,

sin. u

y=yo +

z=z,+5 sin. 2.y +Jy, sin. yy,
sin. .

These formulse correspond to the most general case ;
viz. where the second axes have a different origin ; are
inclined at a different angle, and are neither of them
parallel to the first.

According to changes in these conditions the expres-
sions will be modified ; as in the following cases :

(6.) 1st. If both the second axes be parallel to the
first, we have £ zz,=0, yy,=0, » = »,: whence, substi-
tuting, the formule become

Y=Y +Y IT=2,+2,.

2dly. If the origin be not removed, (retaining the
other conditions in their most general form,) the only
alteration will be, that we have

z,=0, y,=0.

We wﬂl suppose this modification to continue in
the follewing cases. :

3dly. If the first axes be rectangular, the denomina-
tor sin. w=1.

G3
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6 TRANSFORMATION OF COORDINATES,

If at the same time the second azes be oblique, (=
representing a semi-circumference,) we have

z z
Lyy,:—z —XY,, .Z‘J[:E —XT,.

On which consideration we substitute the cosines of the
complements, and obtain
y=uz, sin. z,x +y, sin. 2y, .
T=a, COS. £,T +Y, COS. TY,.
4thly. If both systems be rectangular,

Lo=w,=2 =% _zx, xr,=
=W, ‘2'! 1‘3/: 2 P .—3/.%-

Whence y=uz, sin. 2z, +y, cos. zz,
T=2x, COS. TT, +Y, Sin. xx,.
5thly. If the first axes be oblique, and the second

rectangular,
= _® _x
w,=-, TY,=- —IT,, yy,—— -,y
2 2
_% sin. zz, +y, cos. S
sin. . 3
p="2 sin. T,y +Y, Cos. T.y
sin. o.
——

TRANSFORMATION OF POLAR EQUATIOI\.IS.

(7.) If the nature of the locus be expressed by
means of a polar equation, it is evident that it may be
also considered as referred to given axes by ceordi-
nates : or if, on the other hand, its equation of coordi-
nates be given, it may also be conceived as generated
by a polar equation. It is often desirable, when the
equation of coordinates is given, to obtain the polar
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equation or the converse; and this may be effected on
the following principles.

(Fig. 2.) Conceive the point p determined hy a po-
lar equation referring to the pole O and the radius
Or, to be also referred by the coordinates zy to the
axes XY inclined at an angle »: then we have,

T sin. (v —6)
r sin. (x—o) = sin. @
sin. 6.
sin. (¥ —w) = sin. @
sin. (v —6)
sin. @
sin. 6
sin. » )

S e

ore=1r.

(4)

y=r.
We have thus obtained values of z and y in terms
of r and 6. If then an equation of coordinates were
given, by substituting these values it would .be ¢rans-
Jormed into a polar equation.
We may also obtain values of r and 6 in terms of z,
¥, and o.
- From p conceive a perpendicular drawn to the axis
Y, and let the portion intercepted beyond y be 2. Then
by Euc. ii. 12. we have,

(B)

rP=y+r+2ys
but 2 ==z . cos.»
cr= (YP+T+2yTCO8. @) . ... ©

Again, from the expressions before given, we de-
duce,

& _sin. (w—6) sin.  cos. § —sin. 6 cos. »
y  sin.g . sin. §
1

= sin. w

0—008. .

G 4
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.. Tt+ycosw 1 or tan. § — y.smo

y.sin.o ~ tan.d Z+y cos. w
or§ = tan.~ w) ....... (D)e
\r+ycos.o»

Thus having the polar equation, by substituting
these.values, we obtain an equation of coordinates.

If the coordinates be rectangular, o = %, and these

expressions become,
x=rcos.§ y=r sin 6

r=Ja'+y’ b= t.an.—'%

(8) To transform a polar equation to an equation of
coordinates, one of whose axes forms a given angle
with the fixed axis of the polar equation, and whose
origin is different from the pole.

Let the second axis X, form an angle ¢ with the
first fixed axis, and let the angle of ordination be w,.
Supposing the origin to continue the same, the polar
equation is readily transferred to these axes by sub-
stituting in the formula (4) and (B), », and (6 +7);
and supposing %, y, to be the coordinates of the ge-
cond origin O,, by Art. (6) case 1st, we Lave,

x =z, 4r 0 [w,.— 0 +v)]
- sin o,

sin. (6 + .
Y=o+ _sit(l. 07)
If the second fixed axis be parallel to the former,
Y =o0.
If the axes are rectangular, the expressions become

& =2x,+ rcos. (8+7).
Y=y,+ rsin. (+7)

¢ tan.""a signifies a circular arc whose tangent=a. In the same

way we use sin.—'a, &ec.
-
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THE CLASSES AND DEGREES OF EQUATIONS.

(9) DEF. If an indeterminate equation consist of a
Jinite series of terms, in which the variables z and y
occur in their whole positive powers, or so involved
that the equation is reducible to such a series, it is,
called distinctively an algebraic equation.

Any equation not of this kind is called a ¢transcen-
dental equation.

(10) The degree or dimension of an algebraic equa-
tion is the number equal to the exponent of the vari-
able or sum of the exponents of the variables in that
term of the equation in which it is the greatest; it
being always presupposed that the equation is cleared
of roots, and reduced to its simplest form.

In investigating the loci of equations, we class those
which are algebraic according to their degrees. We
shall consider these first, and those of the transcen-
dental kind afterwards.

When we speak of an equation simply, it will be
uq‘lerstood to mean an indeterminate equation, unless
the contrary is specified.



DIVISION L
ALGEBRAIC EQUATIONS.
——

SECTION 1.
EQUATIONS OF THE FIRST DEGREE.

Investigation of the Locus.

(1) According to the Definition above, an equation
of the first degree is one in which the power of each
of the variables is unity.

An equation of the first degree may be represented
in its most general and complete form thus:

Ay+Bzx+C=0,

the coefficients being supposed affected by their proper
signs. ’

This form includes all possible cases: in fact, the
only variation which could be made would be by sup-
posing C = 0, in which case the equation would still’
be of the first degree. If either 4 or B = 0, it would
become determinate ; if both = 0, it would be reduced
to C = 0, or no equation of the variables would re-
main. We shall first investigate the locus of the equa-
tion in its complete form, and then shew to what con-
ditions a change in its form corresponds.

By transposing and dividing we obtain,

C
¥y+4 B
x - A
Or, referring to coordinates, we have the ratio be-
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tween the variable ¥ 4, a constant part, and the va-
riable z, = a given ratio.

(2.) Thus, Fig. (1) taking the coordinates zy, inclined
at an angle o, since y must be measured from the origin

O, let OC be taken = % Then measuring any simul-

taneous values of = and y from O, and drawing paral-

lels, we have the locus P; and -g!/- = a constant ratio.

This therefore is the characteristic property of the
locus of the first degree: of which it is evident there
is but this one species.

Also the locus is of unlimited extent on both sides
of the axis.

(8.) To find to what geometrical conditions this locus
corresponds. From a fixed point, as C, draw Cy, and
yp in the given ratio to it, at an angle = w. Take
other successive values in the same manner; and it is
evident, from the principles of geometry, that we have
a series of similar triangles; and the points pp,, &c.
will lie in a straight line passing through C.

.Cor. Hence if in any different equations of the first
degree we have the ratio —g the same, the loci will
be straight lines parallel to each other. For C and
A having in the second equation different values, the
point C must be taken at a different distance from the
origin: and the corresponding values of the terms of
the ratio Cy yp will be different, though the ratio con-
tinues the same. Hence the locus will be a straight
line parallel to Cp, and situated on the same side of
it as the new point C is with respect to the former
point C.

(4.) Designating the line which is the locus of the
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equation by the symbol / and the ¢ it forms with x
and y, < lr < ly; (the sides of a A being as the
sines of the opposite angles;) we have,

B sin. Iz

4~ s Iy
If B= 0 sin. Iz = 0, or Iz is parallel to X.
Also the equation becomes
y+€ -0
4 )
which gives a determinate value of y, and the locus
passes through the point B so determined.

In like manner if 4 = 0, the lecus is parallel to the
axis Y. Thus, in general, if the coefficient of either
variable = 0, the locus is parallel to the axis to which
that variable is referred. '

(5.) If in either case we have also C=0, then 4y
= 0, or Bx=0, or the locus coincides with the axis X
or Y respectively.

(6.) If the other coefficients are finite, and C=0,
the points C and B coincide with O, or the locus passes
through the origin. )

e —

(7.) To express the angle contained by two lines in
terms of the coefficients of their equations and the
angle of ordination.

Let the equations be

ay + bz + ¢ =0, giving the line /,

ay+ﬁx+7=0 .. s e A
From (4.) sin.le b od sin.az _ @
sin. ly a sin. Ay ~ &
Blltlly:w—ll‘ AY =w—AL.
sin. Iz ’ b

. n n . =
sin. o cos. {xr —cos..» sin. Iz a
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sin. Iz

cos. lx
tan. lr

sin. @ —cos. w tan. Iz

sin. o —Co0S. @

cotan, lp = — sz (sin.  —cos. o tan. Ir)

= —~bsin. @ b cos. » tan. Iz

.a a
tan.lr—tan.h'bcos'" =—-bsm.oo.
' a a
Whence; tan. lr = ——*—b Sin. @
) a-b cos. v
And in a manner exactly similar,
tan, Az = — B 8i0- @
a—f3 cos. ®

But cirn=lx—>x
.. tan. IA = tan. (lr —Ax) .
. . tan. lr—tan. Az
= (trigon.) 1 + tan. Iz tan. Az
Or substituting the values above,
b sin. o _ B sin o
bcos.o<a Bcos.o—a

- bsin. » B sin.
, bcos.o—a’ Bcos.w—a
bB cos. w sin. v —ab sin. w — Bh sin. w cos. v + af sin. »
=7 BB cos. " —ab cos. w—af cos. w +aa +bB sin. 0
(aB —abd) sin. » )
aa + bB —(aB + ab) cos. »

Cor. Hen,ce if lA=g tan. A =c

or tan. A=

*. aa+bB —(aB + ab) cos. w=0.

wé
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(8.) To express the equation to a straight line which
shall pass through a given point, determined by the
coordinates x, y,.

Let the equation be Ay + Bz + C=0,

And since the given point is by supposition in the
line to which this equation belongs, the equation for
that point becomes Ay, + Bz, + C=0.

ubtracting this from the
5 former v%e have }A y-¥.) + B (x—z)=0,
which is the form required.

(9.) To find the polar equation corresponding to an
equation of coordinates of the first degree.

In the given equation Ay + Bz + C = 0, substitute
the values of » and y from the forms (4) and (B)
(Introd.) and we have,

Ay S0 (] + By S0 (0 —0) +C=0
sin. o sin. o
—C'sin. o

“" = A sin. 6+ B sn. (0 — 0)
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SECTION II.

EQUATIONS OF THE SECOND DEGREE.

———
§. 1. Solution of the equation, and investigation of its locus.
(1.) An equation of the second degree is, according
to the definition, one in which the power, or sum of
the powers, of the variables in some term or terms
=2, and in none exceed it. The most general and
complete form of such an equation would be one in-
cluding every combination of the powers of the vari-
ables, subject to this condition, and would be ex-

pressed thus;
Ay’ + Bxy + Cr* + Dy + Ex + F=0.

A general solution of this equation is readily ob-
tained for either of the variables, in terms of the other
and the constants. Taking it for y, we have by trans-
position,

Ay + (Bz+ D) y= —Cx*— Ex~F
v +B3;Dy+(Biz=D)‘

(Bz+Dy _C. E__F

=4 ~4 4 4
B.z'+D
. —od
v B’x’+2BDx+D’—4ACx’—4AEw—4AF.))
* ( ad
_=Bz+D
Ol'y— 244 —_

BD —-4AE D —44F
J([B=42:4C =+ [2 o Ry €
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(2.) If we refer this equation to coordinates, it is
obvious that the value of y will consist of the aggre-
gate of two parts, corresponding to the two members
of this expression; the first giving a locus determined
by a part measured from the axis X, as m (Fig. 5.)
the second a locus determined by a part measured from
m in the same line ; but having two equal values, one
above, the other below, m, corresponding the signs
+ and —, and therefore giving a locus pg¢, in two
branches, one on each side of the locus m, at equal
distances. :

If the second member were to become=0,
the first would give,

24y + Bx—D=0
which being of the first degree, the locus m is a
straight line. It is called a diameter : and the lines
as pmgq, bisected by it, and all parallel to ¥, are
called its ordinates.

If we had solved the equation for x in terms of y,
we should have had an expression analogous to the
former, and should only trace the locus in the direction
of the axis ¥. In such a solution the first member
would give another diameter, whose equation would be

2Cz+By—-E
having its ordinates parallel to X.

The nature of the locus pg will thus depend essen-
tially on the second member of the expression, which
we proceed to examine.

Resuming the solution for y, it may for the sake of
brevity be expressed thus;

y=k+mz+ v (px +q2* +n)

Now considering only the second member, or the
quantity under the radical sign, and writing it =" we
have,
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o +lry BT
7 9 ¢
This being a quadratic equation we may, by a pro-
perty of equations, easily reduce it to a form which
will give us the conditions on which its values depend.
In order to solve the equation we take

.l"+p.r+p __.__f r
¢ TagTy ¢y
whichwemaywnte;?hs.. . .. (A

whence = —2—q+«/(r’ +s) )

Now if =0, and x, 2, be the values of 2 corre-
sponding, we have

==L ..
_ &Ty= 2q+~/.s

. ‘z.s_—:_g;—[;-

whence, .r—.z;',=.z'+_£ —s
29

w—.r,=w+€—q+~/.§

Multiplying these expressions together, we obtain
 (@-z). (2~ y) =2 +I—’w+f,—;—
but this result is the shme as the z)rigipal equation (4)
Or we have (2 —2,) . (w—.z'?)=% N ¢4

The equation being reduced to this form, we can
readily investigate the different cases in which the
values assigned to 2 will give 7 real or impossible, or
=0, on which conditions the nature and form of the
locus depend. .

R may first be observed that in thls mvestlgatxon
we wrote

H



18 SECOND DEGREE.
_r_n
s=4
4" ¢
P —ing
. 4
and z, z, will therefore be real when p* > 4ng

.......... impossible when p* < 4ng

When real, their values will be equal, if s=0,
or unequal if it have any other value.

These conditions depend wholly on the assumed con-
stants. .
We have also, from the expression above,

w,-.r,=2¢s=2¢(£ n

1
= -g-a\/ (p’ -_ 4nq)
(5.) From considering the form
7.’
(z—a,) (- s)=;
We obviously see that the sign of ;-f will depend

upon that of ¢; and that of the factors on the first
side of the equation, which will arise from the relative
magnitudes of z z, z,.

These different cases may be best exhibited in the
following tabular view: in which we first distinguish
the values of #, and #,, when real and unequal, real
and equal, or impossible. And under each case take
the two suppositions + ¢, —¢.

* If we have ¢=0, r* ceases to give a quadratic equa-
tion, and we have

pPT+n=r"

n
or +__7;

, pp
and we have only one value #, corresponding to »* =0,
which is 2= -7

1= - -
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CASE I
+ ¢

19

CASE II.
-9

In equation B we
have the fu:torl
with the sigus

-
G @ ==()|..-

#.=73 (imp.) (1)

(=)

o+ 72(real) (1)

HZ

M |22 BB O )
(real) 32) (imposs.) (2)
| 7, &a, =2 { 0="
real. r=2a g
(=0) @)]-en... (=0) (8)
0= I’
Equal ‘ (_o) 4)-...... (=0) (4)
- Ty =2, All other (+ + j'_)
values of z (— .("
! real) (5) (imposs.) (5)
ai;?‘c)l:.{ { .',.%" +(_i)
sible. (real) (6)|  (imposs.) (6)
CASE III.
g=0.
+p -p p=0
z=a, { r=0 [¢)) Sovn r=0 (4)
~+n (real) (7)
. 7
2>z +(;')=+ '""'+_(:1_’)=-. f=’—n(imp-) (8)
(real) (2)]  (imposs.) (5)|| - Lo )
z< @, { )—-— - _L)=+'
(1mposs) 6)) (real) (6)
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To trace out the locus.in these different cases.

CasE L +¢. (Fig. 5)

(No. 1.) Measuring off from O on the axis X, parts
=, and 2, -if 2 be taken any where between these
points, there is no locus p, ¢, corresponding to the se-
cond member of the equation.

(2) (8) If parallels to the axis ¥ be drawn through
these points they are tangents to the locus at /7. .

“And beyond these parallels the locus extends inde-
finitely in two branches. o

(4) If the parts=z, and #, coincide, the points
V'V, coincide.

(5) And (retaining this supposition) if the values
of & be taken on either side of these points, the equa-
tion becomes

(z—2,) g=0

whence y=Fki+mz+/q(z~2,)

a form including two equations of the first degree.

The locus therefore becomes two straight lines: and
since the equation may be expressed thus,

y=k+ (m+vg) 2—2ng
y=k+ (m—=vq) x +2/9

in which the ratios of the coefficients of # and y are
different ; consequently the lines must intersect, (i. 3.)
and when » = 2, the exi)ressions' are reduced to one
value of y = k + mz,. Which gives the point of inter-
section. .
(6.) If there be no point 2 corresponding to r*=0,
take @ corresponding to the least value of 7% that is, of
. mp mq. (Fig. 9.) Through pg conceive parallels to the
diameter to pass. Between these there will be no
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. locus. It will touch them at p, ¢, and extend indefi-
nitely beyond them each way. Thus in this case
(which cannot occur at the same time as the former)
we have a similar locus.

DEF. The locus of the second degree, characterized

by + g, that is, + (B*—44C) is called an kyperbola©.

(7.) CasE Il. — ¢. (Fig. 6.)

(1) Making a similar construction to the last, the
locus is included between the parallels.

(2) No part of it extends beyond them.

(3) They are tangents at V'V,.

(4) In this case the locus becomes a point.

(5) and (6) There is no locus.

DEF. The locus of the second degree, characterized
by —g, that is, —(B*—4.A4C) is called an ellipse.

(8) Case IIL. ¢ =0. (Fig. 7.)
(1) The locus touches the parallel through z, at 7.
(2) It extends indefinitely beyond it on the positive
side. ' :
(8) On the negative side there is no locus.
(4) (5) (6) The conditions are exactly the same, but
the whole lies on the opposite side of both axes.
(7) (8) The equation becomes
y= k+mex + 4/ n
which includes two equations of the first degree, hav-
ing the same ratio of the coefficients of « and y: and
consequently representing two parallel straight lines.
(9) No locus.
‘DEF. The locus of the second degree, characterized
by ¢=0, that is, B* —4.4C=0, is called a parabola.
< The student will be careful not to attach any other meaning to

these. terms than what is strictly implied in the definition of them.
" H3
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VARIETIES IN THE FORM OF THE EQUATION.

).) We have thus far conducted our investigation,
ng the equation in its general form. We have now
xamine the varieties of form of which it is suscep-
, and how such changes will affect the locus.
; is evident that such changes of form will consist
yme of the coefficients being supposed =0, or cer-
terms to be wanting. At least one .of the three
terms must be present, in order that the equation
- continue to be of the second degree: and terms
lving » and y, that it may continue to be indeter-
ate. . )
Ve will first consider the changes of form as taking
e by the deficiency of some of the three first terms.
pon the three first coefficients the species of the
s has been shewn essentially to depend; but no-
g is assumed respecting them, except the designa-
of the coefficient ¢, or (B*—44C) as +, —, or
The characteristics, therefore, of each species
ain unaltered, whatever supposition is made re-
ting the values of 4, B, and C, consistent wzth
assumed designation of q.
0.) 1st. The condition which gives the hyperbola, viz.
+(B*—-44C)
remain unaltered on any of the following supposi-
83
) A=0 (2) C=0 (8) A=C=0.
) B=0 and .. 4 and C with different s1gns,
— 4.4C may become +.
' we adopt successively these suppos1tlons in the
ral equation, we obtain these variations in its

I3

\
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1) - Bzy + Cz*
g; Ay’+g:; +Dy + Ez 4+ F=0.
(4) + Ay’ FCr

(11.) Of these forms, however, it is essential to ob-
serve, that the first supposes 4=0; in which case the
equation canuot be solved for y, as above. In this
case, however, we might solve it for z, and obtain
exactly similar results.

In the second form, where we have both 4—0 and
C=0,we can 'give no solution of the equation as before,
either for x or y. It may, however, easily be shewn,
that in this case, by a mere transformation to other
azes, (without affecting the nature of the locus,) we
derive a form involving both y* and z* with finite co-
efficients. For this form Bzy + Dy + Ex+ F=0 is
evidently equivalent to '

1B ((y-2r-@+2)) + Dy + Ez+ F=o.
Now let us suppose the locus referred by coordinates
2y, to rectangular axes; and the axis X, bisecting
the angle, (which we will call 2¢,) formed by the
oblique axes: we have,

LxY=¢, 22,= —¢, 3/3!:=;-—¢a 3:%=% +¢~_

Hence to express the rectangular, in terms of the
oblique coordinates, the formula (Introd. 6. Case 8.)
gives us,

,=—2sin. ¢+ysin.¢ = (y—2z)sin. ¢

2= xcos.p+ycos.d¢ = (y+z)cos. ¢.
3B __4iB
Let us assume a-m, V= Coad 7

-~ 3B (y—2)=ay’, 1§ B(y+z)=y2
H 4
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Again, let D=k +g. E lt-g,
And assume 3=_8__, ¢= k

sin. ¢ - COs. ¢
Then 3y,=(y —z) ¥ sin. ¢
&, =(y +Z) € cos. ¢

¥, + e, =gy —gr + ky + kx
=(k+8) y+(k—g) .
Thus collecting these results together, the ongmal
- form becomes
- ay; —y&; +3y, + e, + F=0.
which expresses the same locus referred to rectahgular
axes having the same origin, but so inclined to the

former that the angle XY is bisected by the rectan-

gular axis X ; and this might (if it were worth while)
be transformed to axes forming any angle, which
would give the complete equation. Thus the second
form is properly included under the general designa-
tion of the hyperbola.

(12.) 2dly. The condition which gives the ellipse

—~ (B ~4.4C)

will remain unaltered, only on the supposition B=0;

for since B*is essentially positive, néither 4 nor C
can=0; and when B=0, 4 AC must be- positive, in
order that the negative sign may remain, or 4 and C
must each have the same sign. Hence the only varia-
tion which the equation admits in this case is,
(6) dy* + Co* + Dy + Ex + F=0.
" (18.) 3dly. The condition which gives the parabola
(B*—4 AC)=0,
will remain unaltered if we have (1) B=0 and 4=0,
or (2) B=90 and C=0.
Hence the variations of the general equation are,

o
!
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((g)) ‘gg:} +Dy + Ex + F'=0.

In the latter case the equation must be solved for z,
as before remarked. e

Of these forms (5) and (4) differ only in their signs:
and it is evident that they include all the possible va-
rieties, supposing the latter part of the general formula
to remain unaltered.

(14.) The changes in this latter part, corresponding
respectively to the deficiency of each of the three last
terms, when combined either .all together, each two
together, or each singly, with each of the variations
before investigated, give the whole of the variations
in form of which the equation is susceptible. And
these conditions D=0, E=0, F=0, will not affect

- the species of the locus, since the solution of the equa-

tion admits of 4, m, n, and p, being either +, — or
=00 N

Hence it is evident that any indeterminate equation
whatever of the second degree must correspond to
same case of the three curves above investigated; and
they are therefore the only species of the locus of the
second order.

We have now to shew to what conditions in the
locus the deficiency of each of the last coefficients will
correspond.

(15.) 1st. If the locus pass through the origin, what-
ever be its nature, we must have such an equation that
when 2=0, y=0; and consequently the general equa-
tion is reduced to . . . F'=0.

The deficiency therefore of F in the geuneral equa-
tion corresponds to this condition. '

2d. The equation of the diameter, whose ordinates
are parallel to the axis Y, is (2).
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24y + Bz + D=0.
If this diameter pass through the origin, we have
(I.4.) ... D=0. If at the same time B=0, it coin-
cides with X. (I.5.)
3d. The equation of the diameter, whose ordinates
are parallel to the axis X, is (2).

2Cz +By+E=0.

If this diameter pass through the origin, we have
(I.4).... E=0.

" And these conditions holding good conversely, if in
the equation these several coefficients =0, the locus is
in no other way affected than in its position. :

(16.) It appeared before, that in all the cases we
might have B=0 without affecting the species of the
locus ; and . we may also have F'=0, together with
D=0, and still retain the three species. These assump-
tions therefore may be made, and the form still be ge-
peral for all the curves.

Therefore assuming the equation with B=0, D=0,
F=0, we have the origin on the curve, and the dia-
meter to which it is referred coinciding with the awis
X, and having its ordinates parallel to ¥; with which
the tangent at the vertex coincides. .'By adopting
these suppositions we shall greatly simplify the subse-
quent investigation.

With these conditions then, the general expression is
reduced to ‘

Ay* + Cx* + Ex=0.

k becomes=0, m=0, and =0
and the coefficients p and ¢ become

. E c
D= Z) q,: —Zv'
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or writing these values of the coefficients, p and g,
y=1v (px +g¢2’).
Also the distance PV, becomes=g .

PR —

§ 2.

P GENERAL PROPERTIES OF THE CURVES OF THE
} SECOND DEGREE.

DIAMETERS.

(17.) We have seen that in every case the locus of
the second degree has a diameter bisecting a system of
parallel chords. It becomes a question whether other
systems of parallel chords may not in like manner have
a diameter bisecting them; or the problem will be o
,l Jind the locus of the points of bisection of a system of
- parallel chords. )

(Fig. 8.) Assume as the equation of any chord

P9,

ay+ba§+c=0.
sy =g 0529

Let the ratio g be constant for all the chords, :-; being

susceptible of different values peculiar to each chord :
the equation then represents all the system of parallel -
chords. Substituting this value of y in the general
equation (16) it becomes,

A (— r—C ’+Cx’+Ez=0
a
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Whence expanding and multiplying by a* we get
(4b + Ca')2* + (Ea* +24bc)e + =0

Ea® + 24bc A _
Ar + Co /"t dr y o

which may be written for brevity

2+hx+k=0;

Whence z = —g-_t%f(h’—ﬂ:)

Or writing the two values for the points p, ¢, 2, and 2,
and that for m, the point of bisection, m we have,
_Tp+&_ —h

e T2

r+

T

But c= —ay —ba.
Substituting this value in the expression which we
have represented by k, we have
- [24b(¢—ay —bx)] - Ea®
2 (A4b + Ca’)
Whence multiplying and collecting terms, (since
and y now belong to the point'm,) we have
2 Ca'zp= — Ea* + 2A4bayn
or, 2Cazy —~2A4byn + Ea=0,

Ton

. which is the equation for the locus of bisection of the °
. parallel chords: and this being of the first degree,

the locus is a straight line: and the equation of the
" parallel chords being arbitrarily assumed and applying
to any system whatever, it follows that in all curves of
the second degree every system of parallel chords has
a diameter bisecting them.
(18.) If the locus be a parabola we have C=0,
which being the coefficient of the term involving , it
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follows from (i. 8.) ¢hat the equation which thus be-
comes :

—24by+Ea=0
will represent a straight line parallel to the axis X,
to which the diameter at first taken was supposed pa-
rallel : and this equation belonging to any diameter
whatever, in the parabola all diameters are parallel.

(19.) In the other species of curves this condition
does not hold good : and consequently in them none of
the diameters represented by the above equation can be
parallel to that which we have supposed coinciding
with the axis X.

To find the point at which any diameter meets the
axis X we have only to observe, that when this takes
place the ordinate y of the diameter becomes --0 and
we have .

QCM-]-Ea:O, .
or x=—;—§s

an expression which is independent of the terms pecu-
liar to-any particular diameter; cousequently all dia-
meters intersect each other in the same point belonging
to this value of x: this point is termed the centre.
And referring to the general equation of the curves,
we observe that the distance between the vertices or

vy, =g = g, consequently the cenfre, as above de-

termined, is the point of bisection of the diameter co-
inciding with the axis ¥. This value in the parabola
when C=0 is infinite.
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CONJUGATE DIAMETERS.

(20.) In the equation to the ordinates of any dia- |
meter the ratio of the coefficients of z and y, or 2

is constant, since the ordinates are parallel.

Let the corresponding ratio in the equation to the
ordinates of any other diameter be B .

a

In the central curves let the first diameter be pa-
rallel to the ordinates of the second : then we have the
ratio of the corresponding coefficients of the first dia-
meter equal to that of the second ordinates, or

2Ca _B
—24b" o

Whence wé have
2Ca _b
—248 a

Or the second diameter is parallel to the ordinates of
the first. Such diameters are called conjugate dia-
meters ; and the equation being general, the number
of pairs of such diameters is unlimited.

(21.) This investigation applies wherever we can
assume that a diameter may be parallel to the ordi-
nates of a second. '

In the ellipse this is evidently the case with any dia-
meter, and therefore every diameter has a conjugate ;
and this being one of its ordinates, and meeting it in
the centre, is there bisected. Hence every diameter
is bisected in the centre.

In the hyperbola the above assumption can never be
made; since the ordinates to any diameter being pa-
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rallel to the tangents at its vertices, a line through the
centre parallel to these tangents can never meet either
of the opposite curves, or be a conjugate diameter in
the sense above defined.

(22.) To express the angle 4, formed by the two
contjugate diameters, in terms of the constants of their
equations.

The equation of the first diameter being (17)

2A4by —2Caz+Ea=0.

And that of its conjugate mcluded under the ordi-
nates,

. ay+bz+c=0.

From (I. 7.) we have, substituting these values and

dividing every term by 2,

(A4b* — Ca?) sin. .

tan- 7= "Tta +Cab —(Ab*4Ca®) cos. o

To find whether in any and in what cases two con-
Jjugate diameters can be at right angles.

If the comjugate diameters be at right angles, we
have from the above expression, by (Cor. I. 7.)

Aba+Cab—~ (Al +Ca’) cos. v=0;
or dividing by Ao’ ‘
g+% b’+A) cos. v =0.
Whence transposing and dividing by cos. o
b A+C \ b C
2 m) a= 4

b A+C (A+C)'
Or i=—2dcosat? A + a4 cos.” w)
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" Now if the equation had been solved for
should have (dividing by .45*)

a+AZ (r+ Ab=)°°s v=0
Ca* 4+C

@ we
b’

A4

whence 47 A coS. @ b
or multiplying by 7
4+C ) =-
A’b’ A cos. » .
Ca A4+C _ 4+Cy
Wwhenc A" "2dcosw T v Z + 44 cos. ’w)

Which is the same expression as that we obtained

AN

for g. But the expression has two values. These two

values therefore are respectively equal to the two ratios .
of the coefficients of the diameter and its conjugate,
which are at right angles: and these two values are in
terms of the original constants of the equation to the
curve only; (;onsequently in each curve there is one
pair of conjugate diameters at right angles to each
other, and only one. These are called the principal
diameters, or (in geometrical investigations) the ares
of the curve.

(23.) The general equatlon, (q remammg to be af-
fected by its proper sign,) the origin being at the ver-
tex, is,

Y = pz+gz’.
which in the parabola becomes
' ¥ = pa.

The constant p is called the parameter.
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In the central eurves this general expression is evi-
dently = ¢ (P z+ 2
y=¢(o+)

and (16) writingg =2a, whence ¢ = 225’ it becomes

y’=§ﬁ(2ax+z-’)
ory’=%l(2axia:’) {gﬁp} N (%)

To find the form of the equation when the origin
is transferred to the centre, we have only to observe

that the second member of the general expression above

may be written thus,
a’ —a’ + 2ax +x2*

or we have,
s_P (s 2
Y=2a (a —(a+x) )
And the abscissa, reckoned from the centre, becomes
expressed generally (@ + ), or (a+ ) {gl){p ’

Whence, now writing x for the new abscissa, we
have in general,

y=L@-w)
ory’:z%l(¥a’ix’) {gﬂp} .. (D)

(24.) The general equation y*=pz + ga* corresponds
to the case of a diameter coinciding with the axis X,
and having in all cases its vertical tangent coinciding
with Y, and its ordinates parallel to ¥ : and in the
ellipse its conjugate diameter also parallel to Y. And
since the axes may be assumed with any angle of ordi-

I
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nation, this equation applies to the curve as referred
to any pair of conjugate diameters.

With the origin at the centre, and when z=0, we

have
s P (g L PO
y=1,-(0)=15,
or writing this = 5°, we have
p_Y

2 a

But in the ellipse, in this case, y becomes the semi-
conjugate diameter; hence the parameter is a third

- proportional to the conjugate diameters. And since

the equation applies in the hyperbola also, we may
have lines through the centre, parallel to the ordinates
of any diameters, and determined in length by this
proportion, which may be considered as conjugate dia-
meters.

This equation gives us the property that the rect-
angles of the abscisse, or in the parabola the abscisse
simply, are as the squares of the ordinates. Also in
the parabola the parameter is a third proportional to
any abscissa and its ordinate.

From the above expressions we have

p_b

% a
And substituting this value the equations become
y’:Z_:(2a.c-_|-a:’) N )

’=%:(¢a’ia:’). e (d)

By these proberties we are enabled to identify the
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* algebraic loci of the second degree with the geometri-
cal curves derived from the section of the cone.
(25.) In the ellipse and hyperbola it is evident that

we may have 4=C: in which case ¢=1, and ?

=2a=p.

.. a=b, and the equation ahove becomes

in the ellipse y*=a’—2*

in the hyperbola y*=2'—a’=(a’-2*) . (-1)

ory =+ (a’—2*)v/ -1
This variety of the equation corresponds to the case

of the equilateral hyperbola, and in the ellipse to the
circle for all its diameters, and to the case of the pair of
conjugate diameters, which are equal in every species
of ellipse.

cecant—

INTERSECTIONS OF DIAMETERS WITH THE CURVE:—
AND ASYMPTOTES.

(26.) In the central curves to find the coordinates of
the points at which any diameter meets the curve.

At this point the coordinates of the diameter will be
identical with those of the curve. Taking the origin
at the centre, (through which all diameters pass,) let
the equation to the diameter be

ay+Bx=0

Whencey:—é z, .1:=._..a_y,-
a

or writing—g =m
o
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The equation to the curve (d) gives

S
Y —+b’ia—,z’,

or a’y’ F b'x* = -?a’b’{gl{p'

Hence, substituting for y we have,
am'y’ ¥ by’ = F b,
or = +_“'_b’_
a’m' ¥ b’
and substituting for x,
aﬂyﬁ : %’yﬂ = _T a’bﬂ

or m'a’y’ ¥ by’ = ¥ m’a’h’
s FTm'a’h?
TaemFb”
Hence in the ellipse
r= 2
V(a*m*+b*)
_ mab
VT Sa@w sy
In the hyperbola (multiplying both terms of the
fraction by —1) we have
_ ab
T V(B —am®)
_ mab
Y= JF—amwy
These values in the ellipse are always real ; or every
diameter meets the curve.
(27.) In the hyperbola the designation of these
values will depend upon the value of b* compared with

a’m’, and according as we have

&
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\bz > 303 b > &y and Y ;.;?l .Ne
: am,or; : m, Willbe =wp°m

In the first case, the diameter meets each of the op-
posite curves to which the equation belongs.
In the second, it never meets them.

In the third case, or if we havez = m, the diameter

only meets the curve in a point infinitely distant ; or in
other words, if in the hyperbola the equation to a line
through the centre be

with the condition B_ b,
a @

that line never meets the curve, or ceases to be a dia-
meter, according to the definition, and becomes an
asymptote.

(28.) From the equation to the asymptote just ex-
pressed, and writing the angle of inclination to the
principal diameter=¢, we have

And when the ordinate to the asymptote meets the
principal diameter at the vertex
z=a ..y=b,
here a=r. cos. ¢, b=r.sin. ¢, a’+b'=r*
(29.) We have already seen that the case of the
general equation, involving the product zy, was, by a
transference to other axes, brought into a form involv-

ing the squares of the variables. It will be easily seen

that these axes are the asymptotes; and we thus have
the equation of the same curve referred to the asymp-
13

e

[T U



88 SECOND DEGREE.

totes as axes; or, as it is usually called, the equations Zo
the hyperbola between its asymptotes.

When the form of the equation is that belonging to
rectangular axes, and the origin at the centre, the cor-
responding form of the equation, referring to the asymp-
totes, is easily exhibited.

The equation in this case,

y=2 @-a),
' is evidently of the form
ay' —yx’ + ¢ =0,
which by reversing the operation before (11), gives the
form referring to the asymptotes,
' Bz,y,+¢ =0,

¢
LY, = —=5
or 2,y 5
) 2 %ﬁ — 3 ot 3 e
here {=ba*, and a a—sm’cj» *.f=4a’sin.’ ¢;
¢ F
B~ asin'g’
But substltutmg the value of 5* (28) this becomes
_¢ r=a+bd
TY == —g—
which is the form required.

whence
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§. 3.

FOCAL CONSTRUCTION; AND POLAR EQUATIONS.

(80.) In each of the curves let ¢ = the distance
measured, from the vertex, at which the ordinate = the
semi-parameter, meets the axis. The point at which
this takes place is called ¢he focus. We have then to
find from the equations the value of the abscissa cor-
responding to this point.

In the parabola, since .r,# < y,=g,

r_ =P
we have 4 = pc, or c= e

Hence there is one such point at this distance from
the vertex.

In the ellipse and hyperbola, (the centre being the
origin,)

Yr=, Y=g

Whence substituting in the equation
. b, )
y =7 (a*—27)
- b
and dividing by Ve have
b=a -2,
or r,= ++ (@’ =)

Hence there are in the ellipse and hyperbola two
such points at equal distances, one on each side of the
centre.

The distance a + ¢ {gﬁp } is called the excentricity.
14
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And the ratio %= e, the ratio of excentricity.

This ratio = 1 + :_’;, and hence we have

In the parabola =
hyperbola ¢ < > 51
ellipse <

Hence ?::l —i:l —.(‘_l_.i_c)’=l -
a’ a’ a

And from the above values of e we have ¥ (1 —¢’) { gl{p )

Hence also ae=a+c,ora. F(1—e)=7F c.'.a=i_c_e
(81.) Hence, by substitution in the general equation
to all the curves, the origin being at the vertex, we

obtain
- 2cx Hyp.
y=F(1-¢) (1—:;,’—"") {Eu.
Y= —r+er’+2x(l+e)
Yy +2°—2c2 + C= €7° + 2cex + ¢
. ¢ 2z _afc s
Y +(@—c)y=¢ (?+T+ z’)—e’(z+-z‘)

Hence we derive the following construction ;

(Conic Sect. Fig. 12, 18, 14.) Let V’F' be the ab-
scissa = ¢

2=VM y=PM
FP=y 4 (z—0) .- =e'(‘_;+z)=
. FP
. =e
iz
e
VA 1 | _c
Take 7 = & .+ PA=S

£+x= VA+VM =AM



SECOND DEGREE. 41

And we have %»: e |
or drawing the perpendicular AA and PA at right an-
gles to it, and which therefore = AM, we have the
construction of the curves by the directriz: or we
might thus identify the loci of the second degree with
the geometrical curves thus described in plano.

——————

To find the polar equations to the curves of the se-
cond-degree, the focus being the pole.
1st. In the parabola, the vertex being the origin, we
have
y'=pr=4cr
And if the origin be transferred to the focus, the
abscissa becomes z— c=r cos. 4. (Int. 7.)
and y=r sin. §
hence r*=r*(sin.” 6 + cos. ) =22 cx+c*+4 cx
=(z+c)’
Cr=T+C=T—C42=2—(c-2)

= g—r cos. §

p_1
T2 1+cos. 8

(83.) 2dly. In the ellipse and hyperbola, the centre
being the origin, we have, substituting in the form
(24. d.) the value given in (30.)

y=1-¢) (@ ~2)

If the origin be transferred to the focus, the abscissa

becomes ae —z, and taking the focus as the pole,
ae—zx=r cos. § by (Int. 7,)
or r=ae+r cos. §
and y=r sin. §
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Substituting these values in the equation above, we
obtain
r*sin’ 6= (1—¢) {a*~(ae+r cos. 6)*}

= si:.’o{ (1-¢) (a’ —(a%¢* + 2 aer cos. 0 + r*cos:? 0)) }

8in.’ 6 + (1 —e*) cos.”§ 2(1- e’ aecos 8
or r’( s(in.’o ) ) ( ( ) )
_(1=¢) (@—a'e)
- sin.*
2(1—¢€)aecos.bd _(1—¢) (a’—a’e)=a’(1 —e?)*
1—e€*cos. b 1—¢€*cos.?
Whence, solving the quadratic,
(1 —¢*) ae cos. 6 @ (1—-e)
T—Fcort £ {1 Feosi
(1 —e€*)’a’e® cos.? 9
(1 —¢*cos.” 8) }

{—(l—e’) ae cos. §

Pt

r=-—

+
r—————l’

T 1—=e"cos’ b
+v{@ (L=€) (L—¢’ cos.’ §) + (1—e*)"a%" cos.* 6}

1
=(l—e cos. 6.) (1 + e cos. 6.)

+v{a’ (l—e’)’}}

{ —(1—e*)ae cos. 6

l -~
= - ) — )
~(1—ecos. 0)(1 + e cos. 0)[41( ) (+ 1—e cos 0)]

r=+ 2 a(l—e) ta b 1 _ P 1
T+ecos.0 — & 1tecos b 2 Trecosd

This expression includes that for the parabola where
e=1.
(84.) To find the polar equation to the ellipse and
hyperbola, the centre being the pole.
We have evidently
r=r+y’ = 7 cos. .0,
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and substituting for y*, this becomes
r=zr+ (1-¢) (a’—2)
=a'(1-¢)+ e
=a* (1 —¢) +e’r* cos.* .
<’ (1—€cos’) =a’ (1—-¢)

orr= a~/(1 (l—e’)’a)

This expression is general for both curves. In the
hyperbola we have only to change the signs, since
e>1.

(85.) In the circle e=0 : hence either of these polar
equations gives r = a constant quantity.

‘We have already seen that the most general form of
the equation of coordinates to the circle was included
under that of the ellipse when 4 =C. The constancy
of the radius enables us to put that most general ex-
pression into a form which shews the value of the co-
efficients.

If we conceive a circle referred to axes forming any
oblique angle », and having the coordinates of its
centre given, a, 8; the coordinates to any point in the
curve being 2, y, it is evident that joining this point
with the centre an oblique triangle will be formed, of
which » will be the side opposite to the angle=w (or
x—o); and the other two sides will be respectively
a—zx B—y. Also, if from the extremity of r a perpen-
dicular be dropped on the opposite side (@) the portion
intercepted from » will be

(B~y) cos. w.

Hence, by Euc. II. 12, we have
=(a—zx)’+ (8—y)* + 2 (a—x) (B—y) cos. .
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which, by multiplying and collecting terms, gives
Y +2* + 2xy cos. w.
=2(B+acos.0)y

—2(a+pBcos.0)

+ B’ +a’ + 2af3 cos. 0 —1"
an equation which is of the form of the general equa-
tion, and in which 4=C=1. B=2 cos. », &c.

If the axes be rectangular, B=0.

=0

e ——

Upon the principles thus deduced a complete system
of the properties of the curves of the second degree
might be founded: and this has been done by several
writers; as Lardner in his Algebraic Geometry, and
Hamilton in his Analytic Geometry; to which works
the reader is referred who is desirous of prosecuting
the subject upon these principles. We have here car-
ried the deductions only so far as to identify the alge-
braic loci of the second degree with the geometrical
curves, whether considered as derived from the cone
or described in plano, and to exhibit their polar equa-
tions. These afford the data for the fluxional investi-
gation of their further properties and analogies.
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SECTION III.

EQUATIONS OF THE THIRD DEGREE.
e rat——

(1.) A general formula, exhibiting an equation of
the third degree with all its terms, might easily be
drawn out, in a manner similar to that in which we
have given the equation of the second degree. It
might also be shewn, in the same way, how many va-
rieties of form it admits, and the particular cases of its
locus might be classed and described. This has in fact
been done by Newton, in his tract entitled Enumeratio
Linearum tertii Ordinis : in which he shews that the
equation may be ultimately reduced to four general
forms. Of the first form alone he enumerates not less
than sixty-five species, to which eight have since been
added. The whole number of species of all the forms
are perhaps yet uninvestigated. And the fact is, that
in this (and indeed in the orders above the second
generally) such investigation is immensely laborious,
and of little or no use; a very few of the curves only
having any application in other parts of mathematical
or physical science.

The investigation of the equation of the second de-
gree has been fully entered into, because several im-
portant conclusions could not have been derived with-
out doing so: and such an investigation will sufficiently
illustrate the most general discussion of an algebraic
equation and its locus.

With respect, therefore, to the equation of the third
degree, we shall not attempt any such general investi-
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gation, but shall merely select a few instances calcu-
lated to exemplify the nature of its loci, and to exhibit
the primary properties of such of the curves as have
any remarkable applications.

(2.) Let it be required to investigate the locus of
the cubic equation axr=g*; a being a constant quan-
tity, supposed always positive, the axes rectangular,
and the origin upon the curve.

The equation is reducible to the two following cases;

If we have+z it gives+y?, the root of which is+y:

cee e =X e =P e . =Yy:

Here y being in each case possible, and having the
same sign as z, the locus will be constructed as in
(Fig. 10.) or there will be two infinite branches lying
on opposite sides of the axes X and Y.

This curve is called the cubical parabola. The in-
vestigation may be compared with that of the common
parabola, where we have seen—z gives y impossible,
and +x corresponds to two values + y.

(8.) In the same way, if we had the equation

ar’=y’
+x gives + az’ and .. +g°, whose root +y is real.
- .. 4@ ... 4y ..., +y . ...

or the locus (as in Fig. 11.) will consist of two infinite
arcs on the same side of X, but on opposite sides of Y.
This curve is called the semicubical parabola.

———

(4.) Let the equation be yz*=a?
. -
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Here a being supposed positive,
If we have +z it gives + 2, .. y= +§
a’
e AR ... Y= +—
x + y=+=
+x=0 Y=o, and y=0, 2= oo,

Hence the locus lies on the same side of the axis X,
but on opposite sides of ¥'; and the axes are asymp-

totes. (Fig. 12.)

———

(5.) With respect to these, and indeed all subse-
quent curves, it may be proper here to remark, that it
is perfectly arbitrary which of the coordinates we desig-
nate as z, and which as y. Thus the curves are ex-
actly the same as the two above, which are designated
by the equations

ay=2° and ay’=2°.
In tracing the locus, we should only have to reverse
the position of the ordinate and abscissa.

We may also remark that these equations often occur
in a less simple form than as here given; i. e. involving
constants which determine the position of the locus.

Thus the semi-cubical parabola is often met with under
this form,

= —23
ny’=(z—3)

in which case it is to be observed, that, at the origin,

when y =0, we have z —g =0, or a:=£. The vertex of

the curve ... is at the distance =I—; from the origin.
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Here also the designation of the coordinates is re-
versed.

e —

(6.) Let the given equation be '
a’y —x’y —a*=0
This being solved for y, we obtam

a3
a -z

y:

Hence we have the following conditions:

Ifr=+a, y=o.

If +to< +a {the denominator has the same sign as
the numerator, and we have + y-

If =0, y=a, =its minimum value.

If +z> +a we have—y,
and as 2 increases, the denominator increases, and .-.
y decreases ; and this without limit. Hence the geo-
metrical character of the locus will be as represented
in (Fig.18.) For portions being measured off from O,
= 4 a,and —a and parallels passed through them,those
parallels will be asymptotes to the curve, since at those
distances y= o

Within these limits the curve lies wholly on one
side of the axis X.

If a portion of Y be taken =a, this will be the ver-
tex, and a parallel through it will be a tangent.

For values of # beyond the limits of the asymptotes,
the curve lies below X; and this axis and the parallels
become asymptotes to these branches.
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(7.) Let the equation given be
Y'z +a’x —a*=0.
Whence
av/(a—2),
Y=+ Jz ) H
hence we have the conditions,
when z=a, y=0
'::::’ } y impossible
+x<a, +yreal
x=0, Y=x.
The corresponding characters of the locus will be as
in (Fig. 14.), taking OB =a.
The curve passes through B.
No part of the locus lies beyond.
The curve is symmetrical on each side of OB.
The axis ¥ becomes an asymptote.
(8.) To find a geometrical construction of the curve.
From the equation we have

ar —-a’x’'=y'x’,

orzx (a-‘z')=-_y_;’£.

But if a be the diameter of a circle, and 2 its ab-
scissa, this is its equation, the ordinate being

y;—?=y,, or we have yr=y.a;

that is, if a circle be described on OB as a diameter,
and any ordinate Mx produced, so that the rectangle
OB .zM=0M . M P; the locus of P will be the curve
of the third order above investigated. This curve has
been named the witch?®.

2 The invention of an Italian lady, M. G. Agnesi.

K
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(9.) Let the given equation be
yr=(a~z) (x-b) (x—c);

hence y= iJ((a-—w) (w;b) (x—c))_

Case 1. Let the values of the constants be upequal,

and c>b>a.
When y=0, we have (a—2) (z—b) (x—c) =0;

or + r=a
YL =0 if eithers z=b

4 r=C
If 2=0, y=cw. -

Ifb>a>2, y=+v(+) (=) (=)= +v(+)orisreal.
b>z>a, y=++/(=) (=) (=)= ++(=)...impos.
c>2>b y=+/(=)(+)(=)=++ (+)... real.
Hence (Fig. 15.) taking Oa, Ob, O, respectively

equal to a, b, c, the locus meets the axis X at those

points. .

"~ OY becomes an asymptote to the curve.

Between O and a the locus is symmetrical on each
side of the axis.
Between a and b there is no locus.

Between b and c the locus reappears and forms a
symmetrical curve returning into itself, or of an oval
form.

At each of the intersections a, b, c, the ordinate be-
comes a tangent, since two values of y become=0 at
the same time, and beyond that point become im-
possible,

. But in this, as in most of the other cases, no exact
determination of the form: of the curve can be given
without the help of the fluxional calculus.

————
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(10.) Case 2. Let b=c,
the equation becomes when y=0

(@=2) (e=ar=0;
or+_/} 0, 1fe1ther{z b=c

here the condjtlons remain as in the last case, except
that the condition corresponding to the supposition
c¢>x>b vanishes. The nature of the locus conse-

quently remains the same, except that the part between -

b and c vanishes, those points merging in one. (Fig.
16.) At this point two values of z becoming equal,
and the adjacent values giving y impossible, it is called
a conjugate point : it belongs to the locus algebraically,
though it does not appear geometrically.

el

(11.) Case 8. Let a=b. The equation becomes
when y=0, (a—1)(2—a) (z—c)=0,
& +y } =0 if either {w=b=a
r=c

Here the condition corresponding to the supposition
b> x> a vanishes.

The other conditions remain. The form of the locus
(Fig. 17.) differs from that in the last case. At the
point where the two values of x=a=1>0 coincide, the
branches of the curve intersect, and it is called a mul-
tiple point. The values of y do not here become im-
possible : the locus is continuous, and cuts the axis
again in ¢ ; the part between a and c is called a node.

et —

K 2
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(12.) Case 4. Let a=b=c, the equation becomes
when y=0 (a—2) (z—a)’=(a—2)*=0,

and +Z} -=0, ifze=a=b=c.

Ifa>2, y=++/(+) real
z>a, y=++/(—) impossible.
Hence no part of the curve lies beyond the point cor-
responding to the coincidence of a, b, ¢, the node
vanishes, and there is no conjugate point; (Fig. 18.)
and since when y=0, two points of intersection with
the axis merge in one, the axis becomes a tangent to
the curve : and the same being the case for the branch
on the lower side, the two branches touch, and their
extremity is called a cusp.
The equation in this case being

y'z=(a—2)’,
if the origin be transferred to @, becomes
y’((l - Z) =a3;

a form in which it is more commonly given.

(18.) In this case we can deduce a geometrical con-
struction of the curve; for P being any point in the
curve, PM=y, AM =z ; and the equation gives

PM: . MO=AM:,
.AM: MO
PM: T AM

Describe a semicircle on 40, draw AP, let it meet
the circumference in R, join OR, and we have a right
angled triangle ;

AM: | . AN AN

Whence Par (sim.a) = BN (Euc. VI.8.) ON'

Comparing this ratio with the former=to it, alternately
we have




THIRD DEGREE. 58

AN=40-ON _ON . _,
MO=AO—AM~4M "~

or if in the diameter of a circle we take 4M always
= ON), the intersection of 4R with =M gives Pin .
the curve. This curve is called the cissoid of Diocles.
. Cor. The same construction remaining we have by
sim. As. : \
AM.NO=PM.RN ... AM*=zMP

(14.) From this property we may derive a simple
mechanical construction of the curve, originally given
by Newton. (Arith. Univ. Append. Sect. 46.)

(Fig. 19.) Assume two lines at right angles DC,
CE, take two other lines also at right angles, the one
EB=DC, the other BK indefinite, and let them be
moved so that E is always in CE, and that BK al-
ways passes through D. The point P where BE is
bisected traces out the cissoid.

With radius C4A=FEP=AD, describe a circle;
through P draw the perpendiculars zMp and PR ; join
Cp : produce DB to meet the diameter produced in V.

From the right angle at B, and this construction,
we have similar As EPR EBN. Whence,

PE=4€¢_ER=jM _PR=CM
EN ~BE=40 NB=CN

by proportionals = Cd—-CM=AM )
EN-CN=CE=,P
Whence PoM=04AM
and subtracting equals —pM> —,M*
' s MP = AM*

Which by the above Cor. is the property of the cis-
soid; consequently any point P constructed as above
s a point in the curve.

The line CE is called the directrix.

K 3
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(15.) The cissoid was invented with & view to the
* solution of the celebrated geometrical problem, the in-
sertion of two mean proportionals between given ex-
. tremes, on which the problem of the duplication of the
cube depended.
Its application to the former of these problems readily
follows from its geometrical construction.
We must first observe, that if with any quantities we °
have,
a_b
¥=a
then b is the first of two means in continued proportion
between a and d. For take c a third proportional to a
and b: thence

a_a . _b
. ¢ T d
a b ¢

- Now (Fig. 18.) let AC CG be the given extremes,
place -them at right angles, and with centre C and ra-
dius CA describe a semicircle, and construct the cis-
~ soid.

Join OG and let it meet the cissoid in P, and let
AP meet CG produced in Q. CQ is the first mean.

For from the curve AM =NO and MC=CN, and
by similar triangles,

AN _RN_PM_}RN+PM)=CQ
AM~PM~ NS~ Y(PM+NS)=CG
AN _AN*_AC:
AM=NO_ EN'" (@

Whence, by the above lemma, CQ is the first mean
required, and drawing the parallel GL, CL is ob-
viously the second.

also
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(16.) To find the polar equation to the cissoid :
The equation of coordinates may be put undet this
form
oy~ (¢ +y")=0
or ay'=a2v(2' + )./ (2 +Y")
a
a:_a/(z’iw’)=‘/(“’ +y")
but v/ (2’ +y*)=r, A being the pole:
alsod=tan.0 ¥=_ J ___—sin. 0
z V@ Ty
Whence by substitution,
r=a. tan. 6 sin. ¢ .
Which is the equation required; 4 being the pole,
and A4 O the axis.
For further properties of this curve, and others related
to it, the student is referred to Peacock’s Examples on
Diff. Calc. p. 166.

K 4
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SECTION 1V.
EQUATIONS OF THE FOURTH DEGREE.

(1.) General remarks, similar to those made at the
beginning of the investigation of equations of the third
degree, apply in this instance also. No writer has at-
‘tempted the labour of classifying this order of curves ;
but it has been calculated that there are more than
five thousand species. We shall here, as before, inves-
tigate only a few of the most important instances.

(2.) Let the equation be ya® = a*

or y—z
s

.Hence, since a* is always positive,
' + zgives + 2® . + y
-Z... =2 -y
If+2=0 y=o andify=0 zx=-o.
Hence the locus lies on’ opposite sides of both the
axes X and Y, which are also asymptotes. (Fig. 20.)

e

(3.) Let.the equation proposed be,
T —ar b2+’ —cy=0
—a'r’— b’z + a’b’

whence y =
. po
_ (P -a) (»=b) .
or Y= = .
Here (supposing b > a) we have
TrT=—a
y = 0, if either i :Z
=-b
It z<a y=(=)(-) =+
a<z<b y=(+)(-)=—
bz y=(+)(+) =+
r=x Yy +
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Hence the form of the locus is as in (Fig. 21.) tak-
ing from the origin parts = +a, + b, —a, — b; the
curve lies above between a and a,, below between a b
and a,b,, and above ad infinitum beyond bb,.

(4.) If both a and b = 0, the equation gives

x

cS -
Hence the four points aa, bb, merge in one at O,
which under these conditions is called a point of undu-
lation.

* The axis X is a tangent at O, and the curve ex-
tends above it in two infinite branches.

The curve in this case belongs to the general class
of parabolz.

———

(5.) Let the equation given be,
vy + (*—m’) (x+5)'=0

" whence y= v ((m =) (.z-+b))

b being elther{ }

Ifz= +m, then y= +0

x> +m y=+v (=) unpossxble
r< +m y=+(+) real
x==—2>b y=0

=0 Y=o

b=0 y= +v (m'-r)
m=0 y=+v/(@+b)= +x+b

Hence to trace the locus: (Fig. 22.) From the ori-
gin O take OD=+m, OD,=—m, OB=—-b. There
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are two loci corresponding to 4+m,—m. No part of
the locus lies beyend D, D,. '

At these points two values of y vanish, and the or-
dinates becorhe tangents.

Between O and D or D,, the curve is symmetrical
on each side of X.

If b < m, the locus on the negative side cuts the axis
at B, and between B and D, forms a node.

The axis Y is an asymptote to both curves.

(Fig. 28.) If b=m, B and D, coincide, the node
vanishes; and a cusp is formed: the other curve re-
maining the same.

(Fig. 24.) If b> m, the vertex D, lies between O
and B; but b having still a real value, the condition
x=—b gives y=0; but »=—m also continues to give
y=0, and the intervening values are impossible; there-
fore B is a conjugate point.

If b= 0, B coincides with O, and the equation for
the locus on the negative side becomes that of a circle
on the diameter m. '

When m =0, D coincides with O: and the equation
deduced is that of a straight line.

(6.) From this equation of coordmates to deduce the
polar equation.

From the equation we obtain

2 (¥’ +(x 4+ b)’) —m* (2* +2xb +b*) = 0.
(Fig. 24.) Taking B as the pole, BP,P meeting
the two curves; OM=PN=2 PM=y:

= (@+b)+y
rcos. 0 =2+b ... 2 =rcos.8-b.

Hence by substitution the equation becomes,
(r cos. §—b)* r* —m’ v* cos.” 6 = 0,
or dividing by *, and extracting the root,
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r.cos.6—b +mcos.8 =0
or. (r+m) cos. 6 = b.
(7.) Hence we derive the geometrical construction :
If the radius vector meet the axis in C;, we have
BC.cos. 6 =b
oBC=r+m

Hence if in the line BP, revolving about the fixed
point B, the part CP or CP, be always of a constant
magnitude, measured from the point C, at which the
revolving line cuts the fixed axis ¥, the point P or
P, will trace out the locus of the equation just inves-
tigated.

This curve is called zhe conchmd of Nicomedes; the
locus on the positive side being termed the superior,
and that on the negative side the inferior conchoid.
The axis ¥ is called the rule, and the constant part
CP the modulus.

It is obvious that a mechanical construction may be
made upon this principle: rulers BO OY bemg fixed
at right angles; BP always passing through the fixed
point B, and from the fixed point C in it, always mov-
ing in OY, CP CP, taken on each side at equal dis-
tances.

(8.) By means of the conchoid we can solve the pro-
blem, to trisect a circular arc geometrically.

Fig. (25.) Let AB:-be the arc to be trisected. Take
the point B as the pole, and the diametex 4D as the
rule of an inferior conchoid, which passes through B,
and cuts the circle again in P. Through P draw P=r
parallel to 4D: join Dx, DB. The radius vector
BPC gives the modulus CP = DB = Dx: and this
last, from the parallels, is parallel to CP. Hence ¢«
ADz=xPB= (by®) 4 =DB: or Ax is one third of
the arc AB.
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The conchoid may also be used for finding two mean
proportionals between given extremes. See Robert-
son’s Conic Sections. Append. ed. 1802.

————— |

(9.) Let the equation given be,
(@*+y°)y —a’(2* ~y") =0
When y=0 we have z*—a’s*=0,
r=+a
z=+0.

Hence the locus cuts the axis twice at the origin, at
a distance from it OV (Fig. 26.)=a, and again at an
equal distance OV, on the other side=—a.

This curve is called the lemniscataf. But to trace
the course of the locus would require the solution of
the equation for y. It is more readily shewn from the
polar equation, which is thus deduced :

(10.) The former equation may be put under this
form :

which will be the case if either{

U Catr WY
x’+y°
Taking O for the pole we have
r’=r'4y’ y=rsin.0 a=r cos.d.
. (@ =y*) =7*(cos.” §—sin.” §) = (Trigon.) r* cos. 26
Hence the equation becomes .
r’—a’ cos. 20=0
.which is the polar equation required.
Hence when r=0, cos. 20=0
.20, =1=, or S, or Sa; &c.
"that is, the locus lies in alternate quadrants, and is in-
cluded between two lines at right angles, and forming

f Invented by James Bernoulli.
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half right angles with the axis at the origin, where they
are also tangents to the curve.

(11.) Hence we derive the geometrical construction.
Let d=§, or rd=a*
whence, from the polar equation, by transposition,
r=d. cos. 20.

Now if we take an equilateral hyperbola, having its
semi-axis=a, we have by Conic Sections (I. ii. 36.)

CR.CP=a*,
or writing CP=d CR=r, . . . rd=¢*

Also in the same curve by [C. 8. I. ii. 87.] writing
the 2 PCM=4 we have « PCR=26: and consequently
from the right angled triangle, r=d. cos. 24.

..r’=a’ cos. 20.

Thus the locus of the concourse of the central per-
pendicular, and the tangent to the equilateral hyper-
bola, is determined by the same polar equation as the
lemniscata, with which it is consequently identical.

This curve is, however, only one species of an ex-
tensive class; for an account of which the student is
referred to Lardner’s Alg. Geom. p. 345, &c. and to
Peacock’s Examples on Diff. Calc. p. 168, &c.

The fifth and higher degrees of equations present
no examples of importance: we shall therefore proceed
to the general properties of curves of the nth degree.
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SECTION V.

EQUATIONS OF THE NTH DEGREE.

e

(1.) A general and complete equation of the nth
degree, is one consisting of terms which involve the
variables # and y in all the combinations of the powers
of each, such that the highest sum of the exponents
=n, each term having a constant coefficient. These
combinations are easily exhibited; and most clearly so,
when arranged in the form subjoined, called the ana-
lytical triangle & :

v |yaywye| - | - || e

lyn—x y""wy""w"’ — — y&‘”—’ xrt

' v |y |ya | 2

y | x
||

¢ De Gua's improvement on a similar arrangement by Newton.
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The whole number of terms are those of the com-
plete equation of the nth degree; the whole minus the
upper row, those of the (n—1)* degree, &c. The four
lowest give the third degree; the three lowest the se-
cond; the two lowest, the first: or in general, reckon-
ing from the bottom, the first (n41) rows give all the
terms of a complete equation of the nth degree.

(2.) Hence we readily find the number of terms in
a complete general equation of the nth degree.

For the number of terms in each row of the table,
reckoning from the bottom, increases by 1; each row
therefore is. a ferm in an arithmetical series, whose
first term is 1, and common difference I, and the num-
ber of rows, corresponding to the equation of the nth
degree, is n41. Hence the number of terms in that
equation is found by summing the series; or we have

(Wood,. Alg. 212.)
§= Q‘;-—l) (24n)

(3.) The number of constant quantities usually given
as coefficients is the same as the number of terms: but
this number may be diminished by one without affect-
ing the conditions of the equation; since all the terms
may be divided by the coefficient of any one term, and
the whole remain =0. Thus the whole number of de-
terminate, independent coefficients, is one less than the
number of terms. In an equation of the nth degree
we consequently have the number of such coefficients=

(n+1) (n+2) _, _ n(n+3)
2 2

If two equations of the same degree have their cor-
responding coefficients proportionals, they are identi-
cal: since dividing all the terms of each by the co-
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efficient of the first term, the cprresponding coefficients
will be equal fractions.

(4.) DEF. An equatiog is said to be homogeneous
when the sum of the exponents in each of its terms is
the same. .

All equations representing loci must be homo-
geneous. , )

For in such equations the object is to express the
value of one variable in terms of the other and the
constants; each variable representing linear extension.
And to construct the locus, we solve the equation for
one of the variables, as for y, and obtain an expression

of the form

y="vf (2):
but since y represents linear extension it is of one di-
menston ; therefore its value is so likewise : or the ex-
pression *v/f (), whatever be its form, must have all
its terms of one dimension only: .-.f () is homogene-
ous also, and each term of n» dimensions.

, The constant coefficients in an equation, though
commonly expressed by simple quantities, are always
understood to represent quantities of such dimensions
as shall render the term homogeneous with the others.

(5.) To determine the number of points through
which an algebraic curve of the nth degree may be
drawn.

‘Suppose the coordinates of an indefinite number of
points given, as x, y,, x, ¥,, &c. and the equation to the
curve to have its coefficients undetermined : then,
since the curve is by supposition to pass through the
given points, the coordinates of those points will be
.identical with those of the curve. If, then, we sub-
stitute successively the values of these coordinates in
the general equation to the curve, we shall have,
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Ay’ + By, "' x,+ Cy; 2+ =0
Ay’ + By ' 2, + Gy 2l + =0
&ec. &ec.
and there will obviously be as many such equations as
we assume points. But the whole number of coeffi-

n(n+3)  Therefore to
2

determine these there must be the same number of
such equations as those above, in which z,y,, &c. are
supposed given; and consequently the same number of
points assumed : that is, a curve of the nth degree may
be drawn to pass through@

Since each of these equations for the indeterminate
quantities 4, B, &c. are simple equations, the values
can never be impossible.

An unlimited number of curves of the nth degree
may be drawn, fulfilling the condition of passing through
n (n+3)
—g

cients was before shewn to be

given points.

_ a less number of points than Since only as

many of the coefficients will be determined as there
are points.

et ———

(6.) To find the greatest number of points in which
a straight line can meet an algebraic curve.

It has already appeared that changes in the axes
affect only the form of the equation, and not its de-
gree, nor consequently the degree or nature of the
curve. The axes may therefore always be supposed
so assumed, that the form of the equation of a given
degree may be complete, with all the terms. The
general form of such an equation is readily seen by
referring to the table before given, and supposing the

L

e —————— ————— —— T ——
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coefficients supplied. If in that form we now suppose
y to become = 0, the equation will be reduced to the
terms involving only the powers of z, or will be of the
form, .

Ma* 4+ Na*— 4 P . . ... + Vo + W=0.

This equation being solved, each real root of it gives
a value of 2 corresponding to y = 0, or a point where
the locus intersects the axis X. The number of real
roots, and consequently of such points, cannot exceed
n. (Wood’s Alg. Part I1.) As some of the roots may
always be impossible, and, when 7 is even, all of them
may be so, in these cases there will be fewer points of
intersection than # ; or none at all. Thus the greatest

_ number of points in which a curve of the nth degree

can intersect its axis, is n.
The assumption here made respecting the axes is

that which gives # with the highest exponent which

the equation admits in the form which it takes when
y = 0. No other axes therefore can give more points
of intersection ; or, since the number of positions which
the axes may assume is unlimited, no straight line can
have more than n points of intersection, with a curve

of the nth degree.

——————

(7.) If the dimension of a curve be an odd number,
it must have at least two infinite arcs. For equations
of odd dimensions have always at least one real root,
and (Wood’s Alg. Part I1.) consequently for every value
of one of the coordinates the equation must at least give
one real value of the other.

If the nature of the equation be such as not to as-
sign any limit to the values of #, then if any value
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whatever be given to + # or — z, that is, in the con-
struction, if  be increased ad infinitum on either side
of the origin, there will be a corresponding real and
infinite value of y, or the locus will extend ad infini-
tum’on each side of the origin.

If the nature of the equation be such that # cannot
exceed a certain constant value without rendering y
impossible, since the general property will hold good re-
specting one of the coordinates, we shall have for
every value assignable to y ad infinitum, both ways, a
real value of z.

Of the former case we have had examples in the
first degree ; in the cubical parabola, &c. ; of the latter,
in the witch, the cissoid, &c.

If the dimension be an even number, as the roots of
the equation may all become impossible, certain values
of both coordinates may give no real values of the
other, or she figure of the locus may be entirely li-
mited between certain tangents. We have instances
of this in the ellipse and in the lemniscata.

(8.) Curves whose equations are of the form
Yy =pz"
are termed parabole of the nth order.
In this class of curves, (p being supposed always
positive,) if m be an even number,
the condition + z gives + p2™and .. + ¥y
and . . ... + X =00 . 0t +y=o
or there are two infinite arcs on the same side of X.
If m be an odd number,

or there are two infinite arcs on opposite sides of X.
L2
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If the equation were of the form
Y =pam+g2™" + &

z = % would give pa™ > g2™~* +ra™~* + &c.
and the sign of y = « would still depend upon that of
px”. .
(9.) Curves whose equations are of the form
: Yy =at"
are termed hyperbole of the (n+m)th order.
In all these curves the axes form asyuiptotes, since

when
x=0 y=00
and y =0 2=

From the equation we have
artnm

¥= o
Hence if m be an evern number, and @ be supposed
always positive,

n+ m

+xgives + 2" and *. + awm o4yt

and +2=0o0r o ........ +y=oo or0,
or there are two infinite arcs on the same side of the
axis X.
If m be an odd number,
+xgives +2™ .. .. ... +y"
and +x=0o0rew ....... +y=cw or0,

or the two infinite arcs lie on opposite sides of X.
These two extensive classes of curves are both in-
cluded under the still more general formula

Y =pxt®
which with —=m) , ..
becomes yr =p
Ep—
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(10.) To find the greatest number of points in which
a curve of the nth degree can intersect one of the mth
degree.

If either of the axes be parallel to a line joining any
two points of intersection, we should have two values
of z, or of y, equal. Let the axes therefore be so as-
sumed as not to be parallel to any such line of junc-
tion, and thus to give distinct values of the coordinates
X and Y, for every point at which they are common
to the two curves, that is, for every point of intersec-
tion.

Let the equations be such as to give for any one
such value of , and the correspending value of y,

y=Fz*+Gz"""+ ... .. + K=z
N e R +2y
Hence by substitution,

r=8Fz"+ ... +Kz)" + &c.

an equation which is necessarily of mnth degree;
and consequently the greatest number of real roots it
admits is mn; which will therefore be the greatest
pumber of intersections.

(11.) Let a curve of the nth degree intersect its
axes; the successive points at which these intersec-
tions take place upon the axis x are determined by
the values of z, which give y = 0, and simélarly upon
the axis y by the values of y, which correspond to x
=0.

When y = 0, as in a former case, the general equa-
tion is reduced to

A + Bx*~ " +Cx* > +....+ Vz+ Z=0;

each real root of which, as before observed, gives a
value of = corresponding to ¥y = 0, or a point of inter-
L3
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section. .And in any such equation, dividing by 4,

and transposing, we have,

B, ., C ., VvV _-Z
x“+zx" +Z.r" Foeeenne +2w_7

But from the nature of equations, (Wood’s Alg. Part
I1.) this expression results from the successive multi-
plication together of all the roots, and the value of that

-Z
product = —

In like manner taking the equation for y when z=
0, we should have, '

My+ Ny~ + Py +.... +Wy+Z =0,

or y"+ﬁy"’"+§y“—’+. eee F 1—;;3/=7Z
Consequently the ratio of the continued product of the
segments of z, reckoned from the origin, to that of the
segments of y = zM =y, or these products are in-

AZ 4
versely in the constant ratio of the coefficients of the
highest powers of x and y in the above equations.

(12.) If we now suppose the axes with the same
angle of ordination transferred to a new origin, and
continuing parallel to themselves, it has already ap-
peared that this does not affect the degree of the equa-
tion, nor the_ value of the coefficicnts of z* and y*;

hence the ratio 17;[ remains unaltered: and the same .

will hold good for any successive new origins.

These changes in the supposition are the same s if,
instead of altering the position of the axes, we had
taken successive systems of secants parallel to the ori-
ginal axes. - And we have'thus the general result, that
if we take any two secants meeting each other and pa-
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rallel to the axes; the ratio of the continued products
of their segments reckoned from their concourse; is
equal to that of the corresponding products of the
segments of any two parallel secants.

If two or more roots are equal, the corresponding
points of intersection merge in one, and we have the
square, cube, &c. of the tangent, instead of the product
of the segments of the secants.

For instances of the application of this very import-
ant theorem the reader is referred to Lardner’s Alge-
braic Geometry, Arts. 188. 606. And for its accord-
ance in curves of the second degree with investigations
purely geometrical deduced from totally different prin-
ciples, to Dr. Robertson’s Conic Sections, Book I. com-
pared with Lardner, p. 66, &c.

(13.) Ifthe general equation be arranged by dimen-
sions of g, it will be of this form; (dividing by )
y"+B""jCy"" + (D“’”'f"—”—ﬂ') 3/”"+-..+%7=o
And as for any assumed value of 2, this expression re-
sults from the continued multiplication of the several
values of y, (Wood’s Alg. II. 271.) from the nature
of such multiplication it is evident that the coefficient
of the second term=the sum of all such values. Also
the number of such values is (), and consequently the
mean value will be

1 Bxz+C
n' 4
If the sum of all the positive values of y equal the

sum of all the negative, the mean values must also de-
stroy each other; or,

Bx_ C

nd nAd
L4
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Hence if a line, taken as the axis X, be so drawn as to
divide the ordinate y in such a manner that for all
values of # the mean values of y on each side of it
should be equal, the equation of this line must give

~(Bz+C)
T nd

or its equation will be ndy + Bz + C=0. Such a line
is called a diameter, which is thus more generally de-
fined to be a line intersecting a system of parallel
chords, so that the sums of the segments between it
and the several points where the same ordinate meets

the curve on each side are equal.
(14.) The coefficient of the third term in the above
form gives for the same value of z the sum of the pro-
ducts of every two values of y; and the number of

such products will be 7&%’—1).
Hence, upon the same principles, a line of the second
degree whose equation is

n(2-1) gy + (n=1) (Br + 0y + Da* + Bz + F=0

will divide the ordinates, so that the sum of the posi-
tive products of the segments will equal the sum of the
negative.

This curve will also have the same dlameter as the
curve of the nth degree.

In like manner curves of each successive degree may
be shewn to have similar properties regarding the pro-
ducts of every three values of y, &c. Such curves are
termed curvilinear diameters.

For further information on these points the student
is referred to Lardner’s Algebraic Geometry, Sect.

XXI.
PR —
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(15.) In the curves before discussed we have had
several instances of multiple and conjugate points, &c. ;
we have also found a point of contact to result from
twe points of intersection merging in one, owing to two
values of y becoming equal, and beyond that point
being impossible. These conditions may be taken in a
more general point of view from the consideration that
since two roots of an equation always become impos-
sible together, (Wood’s Alg. p. 277.) in the equation
which determines y, at any value of £ where y be-
‘comes impossible, an even number of values of y vanish
together, and the corresponding points at which the
ordinate cuts the curve form a point of contact. If
two values vanish, it is a simple point of contact; if
four, six, &c. it is called a point of simple, double, &c.
undulation. If an odd number become equal, some
value of y continues real, but with a different sign: if
three, five, &c. it is called a point of simple, triple, &c.
inflexion.

But the conditions of all these and similar points in
a curve must be determined by the fluxional calcu-
lus.

—————

(16) An equation of the nth degree may be of such
a form as te be capable of being resolved into two or
more rational factors, which are equations of inferior
degrees, and the sum of whose dimensions=n.

Of this an example occurred in the general discus-
sion of the second degree. (Sect. ii. 6. Case 5.)

In these cases the locus is not one curve of the nth
degree, but several of inferior orders; such, and so
many, that the sum of their degrees=mn.

In any such case if the factors be=, the equation re-
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sulting being a complete power, will only represent one
line whose equation will be the root of that power.
These cases are therefore understood to be excepted,
when we speak generally of the locus of an equation of
the nth degree.

(17.) Since an equation of the nth degree may be so
derived as to represent a number of separate loci of in-
ferior degrees, let such an equation be that of n right
lines, and suppose it put into the following form :

yr+@+p) ¥y +(y’+3z +¢) " + &c.=0 ... (M).

Then for any value of 2 the sum of the values of y is
ax + f3; for since the equation results from the multi-
plication together of the simple equations belonging to
the straight lines which are of this form,

Yy+ar+b=0
Yy+cx+d=0
&c. &e.

whence we have by multiplication,

v+ {(atcte+....) 2+ (b+d+f+....)}y " +....=0

it follows that these coefficients are the same as those
at first assumed; and since the sum of the values of y
in the above equationsis (a+c+e...) 2+ (b+d+f...),
we have its equal az-}B=this sum.

(18.) If we have a curve of the nth degree repre-
sented by the equation, put in a similar form,
Y'+(Az+ B) y— + (Co’Dr+ E)y" +...=0 .. .(N)
we have here, as before, 4z + B = the sum of the values
of y corresponding to any value of x.

(19.) If the curve have as many asymptotes as it has
dimensions, we shall have the values of y in the curve
when 2= o coinciding in the limit with those in the
equation of the asymptotes: and for these points the
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equations coincide. Hence if the former equation be
made up of the-equations of n right lines  which- are
asymptotes to the curve, when =,

The equation (M) becomes

¥ +azy™ +.. . .=0.
The equation (N') becomes

y'-*-A@!,'—'-l-. oo .=0.
and these being identical a=4.

Also in all cases az 48, and Az + B are the sums of
the values of y, belonging to the respective loci: hence
by substitution these quantities become 4z + 8, 4z + B,
and their difference 8 — B is invariable for all values of
z.

But when = this difference=0. ‘Consequently
at all other values it=0, or 8=1); and therefore at all
values of x we have

ar + B=Ax + B;
or, if an ordinate be drawn from a point in the axis
corresponding to any given value of z, and meeting the
several branches of the curve and the asymptotes, we
have the sum of the ordinates to the curve equal to the
sum of the ordinates to the asymptotes ; or, for the
sake of distinction, writing the values of the ordinates

to the curve y, y,, y,, &c. and to the asymptotes 2, 2,,
3,, &c.

Y+t Yt Y+ .. = 3+2,+3+2,+ . ...
Hence by transposition
(¥y=2)+Y=2) + ... = Z%=9)+(2,—y)+.-..

or the sum of the parts of the ordinate intercepted be-
tween the first asymptote and first branch of the curve,
and between the third asymptote and third curve, &c.
is equal to the sum of the parts intercepted between
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the second asymptote and second curve, and between
the fourth asymptote and fourth curve, &c.

An instance of this in lines of the second degree is
found in the familiar property of the asymptotes of the
hyperbola. Conic Sections. (II. i. 6.)
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TRANSCENDENTAL EQUATIONS.

et

(1.) The distinction between algebraic and transcen-
dental equations was before pointed out. (Int. 9.)
The transcendental class includes all equations not re-
ducible to a form involving only algebraic functions of
the variables, or which when reduced into such a form,
consist of a series having an infinite number of terms;
as is obviously the case where such expressions as sines,
tangents, logarithms, &c. are involved. The loci of
these equations are sometimes called meckanical curves.
For this class of curves there are no general principles
of arrangement, or investigation, except so far as the
transcendental functions are classed under the heads of
trigonometrical, logarithmic, &c.; we shall consider only
afew of the most important instances.
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§ L

TRANSCENDENTAL EQUATIONS INVOLVING TRIGO-
NOMETRICAL FUNCTIONS.

———

. (2.) Let the given transcendental equation be

Yy —r cos. (w—n~/7£z2r7y—y’)) —r=20,

in which the quantity between the brackets represents
the value of a circular arc dependent upon  and y,
n and m being arbitrary quantities, and r a constant
radius.
Writing this arc = ¢, we have
y=2 _ 2/ (Ery-y)
mr . mr
andy=r+rcos.y =7 (1+cos.¢) ..... (4)
- whence ¢ = = _n/(27° (1 +cos.y) —7* (1 +cos. ¢)*)
mr mr
_x _n/(r*(1—cos. y))
" mr mr
x n (r'sin’y)
mr mr
or rmy = x—nr sin. ¢

corx=r(my+nsing) ..., (B)

(8.) To investigate the locus. In the first place, it
is evident, that for each value of z there is only one
value of y. It also appears from the above expressions
that if y = 27, the equation becomes
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x
r—r Cos. ——=
mr

(4.) Hence, with rectangular axes, taking a value
of y=2r, and upon it, as a diameter, describing a cir-
cle, we have at this point 2=0. And for any other
value of y, as (Fig. 27.) Ou=PM, we have the value
of OM=x dependent upon an arc ¢ of the circle on
OV, as Ox, whose sine, to radius r, =ux. This sine
being drawn and produced, the value of z or uP=OM
is found by taking the part produced according to the
conditions of the expression above deduced for #: that
is, according to the relative values of m and n. Among
the various cases which might arise, the following are
the only ones of importance:

If we have The equation becomes
— e, ——

, = (2ry—y?)
(1)m=1{y—rcos._(('z‘ (rr,’l/ Y )—1‘=0
and y =r(1 +cos. ¢); z=7r(y +sin. ¢)

n=1
-and<

(2)'(':: 1 {y—rcos.(z - ‘/(3‘? —:l/’)) —r=0
| (8)m <1 1and y=7(1 + cos. ¢); x=r(my 4 sin.y)

x
(4) n=0 m=1{y—rcos. (;)—"=0
and y=7 (1 +cos.¢); z=ry.

In the first case 2 =p=x +zP pz=rsin. ¢ .. aP=ry
second and third, . . . . ... .. = P=rmy
fourth, . . .. ..... =ry
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or in the first case P is determined by taking =P =the
length of the arc ¢: in the second and third, in the
given ratio m to that length, greater or less according
as m > or < than 1: i the fourth, uP=the length.

But px=sin. ¢ being the sine both of Oz and V=,
since when y=2r =0, and ‘.- at this point the arc
¢=0 also, it follows that the value of =P must be
measured by the arc Px: hence the construction of
the curve in the different cases.

In the first case, when #zP is always=the length of
the arc V=, the curve is called the common cycloid®.
In the second and third cases, it is termed the prolate
cycloid, when m is a fraction>1; and the curtate
when <1. In the fourth case, where the part equal to
the sine of the arc vanishes, and the portion is mea-
sured off from x=the length of the arc, the curve is
called the companion to the cycloid.

(5.) If in any of these cases the origin be transferred
from O to the point 4, where the curve meets the
axis X, (called the base,) the form which the equation
will assume is readily found.

Corresponding to the point 4, on the former sup-
position, it is evident that Y==: but this point now
being taken as the origin, the value of ¢ must be mea-
sured from the base instead of ¥V, or we must substi-
tute for ¢

Y=7—4¢
Hence the former value of y must be changed into
y=r (1 +cos. (z —4¢),
ory=r(1—cos.¢,) . ...... (0).
2 This curve was originally invented by Gakleo: its properties,

and those of other species, were investigated by Des Cartes, Pascal,
Sir C. Wren, Wallis, and others.
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The new value of z may be thus fownd: on the
former supposition, when the curve meets the base,
or when y =0, the equation becomes

x
—7rcos. — —7r=0
mr

x
or cos. —=—1 .. r=amr.
mr

Writing the new value measured from A=z, we
have T, =zmr—2z,
or by substitution = zmr —r (my +n sin. y),
=7 (m (x —y)~n sin. ¢):
(or since sin. ¢ =sin. ¢,)

z,=r (mp,—nsin. ¢,) .. ... (D)
- _ &, +nrsin. ¢,
Th=T—

Whence (suppressing the distinctive marks) the equa-
tion becomes,
zny @ry—y))_, _
Y +7cos. ( pom ) r=0.
(6.) The condition which gives y=0, as above, is

now Cos. % = +1=cos. 2=. which also evidently be-

longs equally to every successive complete circum-
ference. Hence the locus meets the base in an infinite
number of points, corresponding to values of z, equal
to successive circumferences of the circle.

(7.) The origin being at 4, in the case n=1, z=
rmy —r sin. ¢: on the axis OV, with the same cen-
tre, conceive a circle described with radius=rm, and
through the extremity R of its diameter draw a pa-
rallel to the base. Let a part of this line AR be taken
Jrom 4., (corresponding to 4,) =z +7sin. ¥ ..=rmy,
or equal the length of the arc ¢ of the circle whose
radius is rm.

M
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Let the circle (Fig. 27.) described on the axis OV
be conceived to move parallel to itself till = coincides
with P, the construction in other respects remaining
unaltered. Let this condition be represented in the
other figures, (28, 29, 30,) and since A,R=xz +r sin. ¢,
the perpendicular diameter of the circle comes into the
position R ; and this being the case for amny point P
in the curve, 4,R always=the length of the arc, in-
tercepted between R and the radius through P ; hence
the result will be the same as if every point in that
arc had been successively in contact with every point
in A,R. Or the same locus would be described if tkhe
circle with radius mr were supposed to roll along A,R,
and the extremity of the radius=r to be the point’
tracing out the curve; which, according as the extrem-
ity of the radius r lies

upon common
within >the circle mr, will be the > prolate >cycloid.
without curtate

(8.) The mode of constructing the cycloids mechan-
ically, just stated, leads to a geometrical extension of
this class of curves, by supposing the base on which the
circle rolls to be no longer a straight line, but itself a
curve.

Thus if we take a circle as the base, and suppose
another circle to roll upon its circumference, and, as
before, take any point upon, within, or without its cir-
cumference, it will trace out a curve which is termed
an epitrochoid : or if the point be on the circum-
Jerence, an epicycloid®. _

Again, corresponding curves may be in like manner

b Tnvented by Roemer: investigated by Newton, John Bernoulli,
&e.
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traced out by supposing the second circle to roll on the
inner or concave side of the circumference of the first,
in which case the curve is termed an hypotrochoid, or,
if the point be on the circumference, an hypocycloid.

(9.) To find the form of the equation in these
cases :

(Fig. 81.) If we suppose the revolution to commence
from 4,, upon the circumference of the circle 4,D at
any point B ; join the centres OC, and let CP = r,
the point P tracing out the locus, and the radius CR
=rm = Cp in CP produced. Then it is evident that
the space traversed, or 4,R = Rp.

Let the radius of the circle 4,1) = R, then from
the equality of the arcs

AR=R¢ = Rp = rmy
whence ¢ = E”’
rm
Drawing the perpendicular Cy, and PM CM, per-
pendicular to OM,

(CPu=y+¢= TP,

- t?
R4r
poom ¢

Cp.=r sin. CPu=r sin. E+rm

¢

Pp = =r cos.R+r"1

CM.= (R +rm) cos. ¢
OM,= (R +rm) sin. ¢
Hence we have,

R+rm

Iy .. (B

Bimm, (R

y= (R +1rm) cos. ¢ +r cos.

z= (R +rm) sin. ¢ +7 sin.

M2
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In the case of the epicycloid rm =r, and these forms
become '
Ryr

= (R +7) cos. ¢+ cos. - ¢

R+r¢
r

= (R +r) sin. ¢ +7 sin.

For the hypotrochoid and hypocycloid the equations
are the same, except that r and .'. 7m are now nega-
tive.

(10,) About the centre O describe a circle with a
radius O4 = OC —r, at which distance the locus will
terminate ; to find the angle 4,04 intercepted between
the extremity of the curve and the position OF; that
is, the value of ¢ corresponding to the position 4 or B.

For either of the points 4, B, the values of  and y
being taken, we have

2+y'=04"= (B +mr—r)’

Substituting for 2” and y* their values in the equa-

tions (E) and (F'), this becomes,

(B +rm)*cos.’ p+2 (R +rm) cos. p.r cos.R:'mm¢+
7 cos.” E+rm ¢
) rm
+ (R4rm)*sin.® $+2 (B +rm)sin. ¢ . rsin.R:":'m¢+
7 sin.» BHTM é
L rm

= (R+rm)*— 2r (R+rm) +

But the first member of this equation, by collecting
terms and substituting cos.” + sin.*=1, becomes

(R+rm)*+ r+ 2r (R+rm) (cos. ¢ cos. Birm

. . R+rm
sin. ¢ sin. T ¢)

$+
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whence —2r (R +rm) =2r (R+rm) cos.(R+”:‘m¢-¢)

po
or—l=cos.(FRn¢) —f;-.¢=r,or ¢=r-;g .

(11.) If we bave rm=R ¢ ==, or the extremities
of the curve coincide. If we have also »m =7, or the
curve be an epicycloid, and the radius of its generating
circle = the radius of the base, the curve is called the
cardioid. In this case the equations above become,

y=R (2 cos. ¢+cos. 2¢)
z=R (2 sin. p+sin. 2 ¢)

For several further properties and relations of these
curves, see Peacock’s Examples, p. 186, &c.

—————

(12.) Let there be given the equation
zZ
or
Here, if 2 =0, y=o.
Setting out from these values, we shall have the condi-
tions corresponding to successive values of z, thus:

Values of 2. (As z increases y increases.

y=(r—z) tan.

———
O<z<r {Alsoghz:ve +(r—2) oty
Land 2 < g .. +tan,

y=0.tan.;_=0c» . . . =a

) For the actual value of which, recourse
\ must be had to the calculus.

(. . . . y decreases.
r<z<2r —(r=2) ] +
. S T - — tan. ety
2r 2
M3

bl " ® e
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x=2r e e e e e e e e e . y=0
. . . . y increases.
2r<x<8r —(r—2) .
;‘:> x .. + tan. Y
= 3r{ y=—2r tan. ’23: < . . =
.+ « . y decreases.
Sr<ax<idr —(r—2) .
2’_ 32' . —tan. Tty
47r
=4 =—8rtan. .. . =0
r= r{ Yy r tan. -

&ec. &ec.

This series of values might evidently be continued
ad infinitum; y always changing its sign when x be-
comes = successive multiples of 7, becoming =0 at even,
and = «, at odd, multiples. The same would be the
case with a series of values of —z.

(18.) Hence we readily deduce the construction of
the curve. (Fig. 82.)

Taking rectangular coordinates, let 4 be assumed
as the origin. Take a value of #, 4C = r, and as-
suming any other value as 4M, draw a perpendicular
MP, on which the corresponding value of y may be
found by taking PM such that to radius (r—=x) or
CM, we may have,

Y= tan.;f = tan. ¢y
r

or so that a radius CP revolving about C shall form
with the axis 4X an angle , determined by the pro-
portion

S8

=Y
i
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Thus the point P, determined by PM moving pa-
rallel to itself, and intersecting the radius CP always
forming an angle ¥ dependant on the value of z, that
is, on the motion of PM, traces out the curve; or, if
the motion of PM be uniform, and CP revolve uni-
Jormly, their intersection traces out the curve.

The ordinates through the points on either side of C
corresponding to z=38», 57, &c. will be asymptotes.
The first branch of the curve will cut the axis X at a
point corresponding to x=2r, and will extend indefi-
nitely below it. A separate part of the locus will lie
between the asymptotes at 37 and 5r, which will cut
the axis at the intermediate points 4, 6r, &c. and will
extend ad infinitum above and below it: the same on
the other side of 4. This curve is called the quadra-
triz of Dinostratus.

(14.) Among the various remarkable geometrical
properties of this curve, the following are the most im-
portant :

1st. Since in the above investigation it appears that
we have

we have manifestly

l.z'_r_ 1 R/H

n drn
if therefore any given abscissa be divided into n equal
parts, the corresponding angle ¥, given by the construc-
tion of the curve, will also be divided into = equal
parts by radii passing through the extremities of the
ordinates corresponding to the successive parts of z;
i or by means of the quadratriz an angle may be di-
: vided into any required number of equal parts.
M4

R SRR - - o~ - - -3 -y
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(15.) 2dly. By means of this curve (supposing it de-
scribed) we obtain a solution of the celebrated problemn
to _find the area of a given circle.

(Fig. 33.) AB being the quadratrix, with radius
r=AC, describe a circle A3. Take -a position of the
radius CP near to CB, meeting the circle in z, and
draw PK, =nx, PM ; then by the nature of the curve

we hav !—
ve ;
-%ﬂ' 4/ -;1—4/ arc 'tﬁ_..—(llm.) BK (Si X )

CK = (]im.) r
CK= (lim) CB’

or 3= . CB=r". Hence m_—%C—_B
But the area of a circle = } radius x circumference.
*. with radius r and half circumference =, the area =
rz which is .". given by the quadratrix in terms of
CB. Hence the appellation of the curve.

For other geometrical properties the student is re-
ferred to Robertson’s Conic Sections, Appendix, (edit.
1802,) and Leslie’s Geometry of Curves.

Another curve of an analogous kind, called the qua-
dratrix of Tschirnhausen, is investigated in Lardner’s
Algeb. Geometry. See also Peacock’s Examples, p. 171,
&ec.

A ———

(16.) The equation y =sin. x referred to rectangular
coordinates, by taking the abscissa z to represent the
length of a circular arc to radius 1, and y=its sine,
affords one of the most obvious exemplifications of a
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transcendental locus: it is termed the sinusoid, or
-curve of sines. Similarly we might give geometrical
constructions of the equations, y=tan. z, y=sec. z,
but for the figures and properties of these curves re-
course must be had to the fluxional calculus.

(17.) The case however of y =sin. x requires a re-

mark. To radius r it becomes-% =sin.‘;. Also suppose

the arc, instead of .“;: , were g—‘;, the expression would

obviously be

= z

y=r cos. ~
The locus is evidently a curve cutting the axis X at
each successive value of r==; and during the inter-
vals lying alternately on each side of the axis. The
greatest ordinate on each side being that corresponding

to .z'=f, ory=r.
Y

Hence it is easy to conceive the curve transferred to
a new axis X, parallel to the former, and passing
through the lower extremity of the greatest negative
ordinate, where it is a tangent to the curve; and the
locus will lie wholly above it, touching it at each suc-
cessive value of r=2x.

The greatest ordinate is now=2r,and the new value
of y in any case =7 +the former y.

We have now therefore y =7 +r cos. ‘;

x
or y—rcos. - —r=0,
r

which is the equation of the companion to the cycloid,
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(4. Case 4.) with which this curve is thus evidently
identical. '

For some curious analogies and properties of this
and other classes of curves, see Lardner’s Algebraic
Geometry, note, p. 474.

———m———

(18.) The catenary is another transcendental curve
of great importance in mechanics: but not even its
construction can be given without the higher calcu-
lus.

(19.) The tractrix is a curve, such, that the locus of
a point on the tangent at a given distance from the
point of contact is a right line, and this line is called
the directrix of the curve. This curve, and others re-
lated to it, can only be investigated fluxionally.

For a full investigation of these and other curves of
the same description, the reader is referred to Lard-
ner’s Algebraic Geometry, vol. I. and Leslie’s Geome-
try, vol. IL.
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§. 2.

EXPONENTIAL FUNCTIONS.

————

(20.) Let there be given the equation involving an

exponential function ;
Y= ar,

Here, when £=0 y=1, and when z=1 y=a.

If we suppose a > 1, with +, y increases without
limit as 2 increases.

With—a, y diminishes without limit as « increases.

If we suppose a < 1,

With + z, y decreases without limit as x increases.

With—x, y increases without limit as « increases.

(21.) Hence the construction of the curve, taking
the origin O with rectangular axes, at O, y=1. Let
that value be represented by y,. (Fig. 34.) For all values
of +x, the locus recedes indefinitely from the axis: and
on the other side of O approaches it without limit, or
the axis becomes an asymptote. If a value of z be
taken =1, the ordinate at that point =a.

Hence, according as a is>, or <1, the divergency
of the curve will lie on the positive or negative side.

The variable being here involved, as the logarithm
of y related to the base a, the locus is called the loga-
rithmic curve®.

If abscisse are taken with equal differences, the cor-
responding ordinates are in geometrical progression.

 Invented by James Gregory : investigated by Huygens.
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POLAR EQUATIONS.
——t———

From the nature of a polar equation it appears that
it may contain any function, either algebraic or tran-
scendental, of the variable angle or arc which it in-
volves. All the polar equations which we have hitherto
considered involve ¢rigonometrical functions of 6.

It remains to consider the cases of those polar equa-
tions which involve other functions of the variables ; as
algebraic, or exponential functions.

i ——

POLAR EQUATIONS WHICH GIVE SPIRALS.

The loci of polar equations in general are sometimes
called spirals; but that term is more usually restricted
distinctively to the loci of those polar equations which
involve either algebraic or exponential functions: in
this sense it is here used.

Some writers, instead of polar equations involving r
and 6, designate spirals by equations between r and the
perpendicular drawn from the pole upon the tangent;
but in order to deduce such expressions in a general
way from the equations between 7 and 6, recourse must
be had to the differential calculus.

We proceed to investigate a few of the most im-
portant examples of spirals.
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ALGEBRAIC FUNCTIONS.
+

(1.) One general class of such equations is repre-
sented by the formula :
™=abft"

1st. Let n be positive.

Under this case the only examples of any interest are
the following :

(2.) Let n=m=1: or r=ab.

In this case when =1 r=aq,

when =0 r=0,
and 7roc.

Hence we have the construction. (Fig. 85.) Taking
O as the origin and OX as the fixed axis, assume
any value of r=a and an ¢ 6, which ...=

By the second inference, the locus begins from coin-
ciding with O; and from the third, successive values
of r, taken proportional to those of 6, trace out the
locus. It is also evident that there is no limit to the
successive values of 6. It may be >, or >mz : that
is, the locus will form an unlimited number of spiral
turns about O.

If 6 be taken in arithmetical progression, or the suc-
cessive radii include equal angles, » also increases by
equal differences.

This curve is called the Spiral of Archimedes®.

(8.) Let m=2, » being still=1 and posxtlve, the
equation is 7*=a.

b Imagined by Conon; investigated by Archimedes.
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Here, when =0, r=0,
and as 6 increases indefinitely, » increases indefinitely.
Hence the construction. The locus begins from
coincidence with the pole; and if 4 be taken increasing
by equal differences, r* increases by equal differences.
Also the number of spiral turns is unlimited.
This curve is called the parabolic spiral.
(4.) 2d. Let n be negative, and m=1,
and 1st let n= -1,
orr=ad~', orri=a;
that is, rf=a circular arc to radius r, =a constant quan-
tity : that is, a circular arc of constant length, the
angle and radius being variable.

When r=0 7;:0, or 6=cw.

When =0 r=cw.

Hence the construction. (Fig. 86.) Take any dis-
tance OR from the pole, and describe a circular arc
RP always=a: the point P traces out the locus.
From the equation it is evident that successive radii
are inversely as the angles they form with the axis.
The spiral is supposed to commence from an infinite
radius, and never falls into the pole, though in an infi-
nite number of revolutions of the radius it continually
approximates to it.

From O take the perpendicular OB=a, and draw
BS parallel to OR : also the ordinate PM=3y.

Then we have evidently,

y=r. sin. g=28S1m- 4

‘. when 6 is diminished without limit, we have

sin. 0= (lim-) 1 .- PM=(lim.) a,
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or BS is an asymptote to the spiral. This spiral is
called the hyperbolic.
(5.) The other conditions remaining, let

n=-—1, or r=ab—+

s ri=a?, or ro=2.
r

Here 6=0 gives r=o

1
=0 —=0, M=,
r m or

Hence the spiral commences from an infinite radius,
and continually approaches the pole, but never coin-.
cides with it. (Fig. 37.) From O take any distance

OR and describe a circular arc PR=16 .". =;l_—’, which

consequently diminishes as r increases; and when
r=c and .".0=0,we have PR=0, or OR becomes an
asymptote. .

The area of the circular sector OPR—=1r*0=4a’=
constant area. This spiral is called the Lituus?.

The student will not fail to notice the analogy be-
tween these classes of spirals and the parabolic and hy-.
perbolic curves from which their names are derived.

(6.) Let the equation be
_ af
e -1
r

‘. rf*—r=af, or 6= .
r—a

b This spiral and the last were the inventions of Cotes.



SPIRALS. 97

Hence, #6=1 r=oo-
if' r=a =«
. if r <a, —¢, impossible.

(Fig. 40.) Hence the construction. Describe a circle
with radius=a : no part of the locus lies within it: it
extends round it, and the circumference of the circle
is an asymptote to the spiral.

Take an angle aOS, giving an arc 6=length of ra-
dius 1, then r= o5, or the locus never meets OS pro-
" duced indefinitely. _

There is, however, nothing thus far to shew that the
curve approaches OS, and in fact it is not an asymp-
" tote. The actual position of the asymptote is found
fluxionally : it is a line parallel to OS, between it and.
the curve.

SPIRALS.
EXPONENTIAL FUNCTIONS.

(7.) Let the equation be r=a’.

Here, when 6=0 r=a°=1, the quantity taken as the
unit must always be finite, or r never can=0.

As 0 increases without limit,  increases without
limit.

6=log. r to base a.

If 6 increase in arithmetical progression, r increases
in geometrical.

Hence the construction. (Fig. 38.) Since r is never
=0, the locus never falls into the pole.

If about O radii including equal angles be drawn,
the radii will be in continued proportion, and the locus *

N
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will extend to an infinite number of turns. It is called
the logarithmic spiral °.

(8.) If radii including equal angles be taken inde-
finitely near to each other, the portions of the curve
intercepted will in the limit be rectilinear. Hence
we have triangles having one angle equal, and the
sides about it proportionals; the As are consequently
equiangular; or the radii form equal angles with the
curve. Hence it is sometimes called the equiangular
spiral.

(9.) From this geometrical property is derived an
easy mechanical construction.

(Fig. 39.) Aline of indefinite length, PY),is capable
of moving in any direction on a plane, but always pass-
ing through the fixed centre O. At its extremity P
it is bent at any angle, and the bent part is the axis to
a small wheel (w): an impulse is given to the wheel,
which, by the natural course of its motion, (always at
right angles to the bent part,) traces out the equiangu-
lar spiral.

If the angle at P=0, or the line, be not bent, the
curve described is obviously a circle; which is a geo-
metrical species of the equiangular spiral. It is also
an algebraical species, corresponding to the condlt’lon
in the equation a=1.

For a variety of examples of other spirals see Jeph-
son’s Fluxional Calculus, chap. 10; also Peacock’s Ex-
amples, p. 179, &c.

¢ This curve seems to have been invented by Des Cartes, and was
fully investigated by James Bernoulli.
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ON SIMILAR CURVES AND SPIRALS.

—eteetie——

(1.) In the most general forms of the equations to
curves, several constant quantities enter, which deter-
mine the position of the locus. When, however, we
take the most simple conditions, such as the axes rect-
angular, and the origin at the vertex or centre, the
constant quantities which remain are now only such as
determine the magnitude of the locus in certain given
directions : that is, for curves of the same degree and
denomination, the varieties in magnitude and form of
which they are susceptible depend upon the values of
these constant quantities, and the ratio subsisting be-
tween them. These constants are sometimes called
parameters.

(2.) DEF. Two curves of the same kind are said to
be similar when any abscisse being taken in the two
curves, in a given ratio to each other, the correspond-
ing ordinates are in the same ratio.

To find under what conditions this will take place,
we have only to observe that the equations being of
the same form, the ordinate in both curves is the same
function of the abscissa. And further, the equations
being homogeneous, (V. 4.) let the constant quantities
(if more than one) be taken in the same ratio in the
two curves : it may then easily be shewn that if in the
two curves we take abscissz in any given ratio, as that
of the constant quantities, the corresponding ordinates

N 2
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being the same functions of these abscissz, and in-
volved with constant quantities which are in the same
ratio, will themselves be also in the same ratio.

This will readily appear from considering a very few
cases.

(8.) In the equation to the conic sections

Y'=px +gx’ where ¢ =ga
the constants which determine the species and magni-

tude of each curve are p and a. In two curves, there-
fore, let them be assumed '

p_a .
—’ =; —’ whence 9=q,
Also take —_ = 1

r _ px _qx’ '= pr+9x _y

=Y —

z' P §% P+ Yt
whence the curves are similar by DEF.

This assumption also obviously gives the condition
in the ellipse and hyperbola, that the axes are in the
same ratio. [Ellipses and hyperbolas are therefore
similar when the ratios of their azes are the same.

For the parabola, by substituting ¢=0, the same in-
vestigation applies. In this case the ratio

r_p_Yy

&, 3 p; X y’z
is unrestricted to any values of p and p,, or all para-
" bolas are similar.

(4.) The application of a similar mode of investiga-
tion to other simple curves is so obvious as to render
particular statements of it unnecessary. We may easily
shew, by exactly similar steps, that alljparabole, and

‘ya
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rectangular hyperbole, of any the same order, are si-
milar curves.

In the same way, from the equations of the cissoid,
and of the lemniscata, which each contain but one con-
stant, we may deduce that all curves of each of these
kinds are similar.

The equation to the conchoid contains two con-
stants : and by pursuing the same mode of investiga-
tion we find that two conchoids are similar if the ratio
between the modulus and the distance from the node
to the base in each curve is the same.

(5.) The same principles apply also to transcendental
curves. Thus if we take the general equation to the
cycloidal curves, we have

y=r (1 +cos. ¢)
z=r (my +n sin. {.)
In two curves let m=m, and n=n, :

also take £ ="
s T
z _ r(my+mnsin. §)
"z, 1, (my, +nsiny,)
. my +n sin. y=my, +n sin. ¢,

‘. my=my,, and n sin. Y=n sin. ¢, :

hence y=¢,, and cos. y=cos. ¢,.

Whence we have,
y_r(l4cosy) r . _&

y, r(d+cos.y) 7, =,
or any cycloidal curves are similar, in which the ratios
between the radii of the revolving and the generating
circles are the same: and the quantity = is the same;
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that is, equal to unity in the cycloids, or to nothing in
the companion. '

Hence all common cycloids are similar, since in all
these m = 1.

For the further fluxional investigation of similar
curves, the student is referred to Jephson’s Fluxional
Calculus, p. 264.

P

(6.) DEF. Two spirals of the same kind are said to
be similar when at equal values of the variable angle
the radii are proportionals.

Thus with the same angle 6 in two spirals, let the
radii be r,p; and with another angle 6, let them be
r,p,» Then the spirals are similar if r-=,

r, Pa
(7.) With the spiral equation 7" =af"* we have,

or all spirals in each of the kinds included under this
equation are similar.
(8.) With the logarithmic spiral, whose equation is

_ r=a'
(] (]
r r a
we have - = —, and 2 = %,
P« Pa @,
1 I
7'? r?z
whence _ — * __ @
T L p
(] [}
P P,
02
b 5
9 L]
or’g =—
v 3 .
P

but this can only =" when we have r=p,and.".a=aq
P .
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or logarithmic spirals can only be similar when they are
equal.

Upon geometrical principles also it appears, from
Spir. (8), that logarithmic spirals will be similar when
the angle which the radius forms with the curve, or
with its tangent, is the same in each; but from the
triangles thus formed it is evident that when this angle
is equal in two spirals the spirals are also equal.

THE END.
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